Solve for x
x=180
x=40
Graph
Share
Copied to clipboard
44800-880x+4x^{2}=16000
Use the distributive property to multiply 280-2x by 160-2x and combine like terms.
44800-880x+4x^{2}-16000=0
Subtract 16000 from both sides.
28800-880x+4x^{2}=0
Subtract 16000 from 44800 to get 28800.
4x^{2}-880x+28800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-880\right)±\sqrt{\left(-880\right)^{2}-4\times 4\times 28800}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -880 for b, and 28800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-880\right)±\sqrt{774400-4\times 4\times 28800}}{2\times 4}
Square -880.
x=\frac{-\left(-880\right)±\sqrt{774400-16\times 28800}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-880\right)±\sqrt{774400-460800}}{2\times 4}
Multiply -16 times 28800.
x=\frac{-\left(-880\right)±\sqrt{313600}}{2\times 4}
Add 774400 to -460800.
x=\frac{-\left(-880\right)±560}{2\times 4}
Take the square root of 313600.
x=\frac{880±560}{2\times 4}
The opposite of -880 is 880.
x=\frac{880±560}{8}
Multiply 2 times 4.
x=\frac{1440}{8}
Now solve the equation x=\frac{880±560}{8} when ± is plus. Add 880 to 560.
x=180
Divide 1440 by 8.
x=\frac{320}{8}
Now solve the equation x=\frac{880±560}{8} when ± is minus. Subtract 560 from 880.
x=40
Divide 320 by 8.
x=180 x=40
The equation is now solved.
44800-880x+4x^{2}=16000
Use the distributive property to multiply 280-2x by 160-2x and combine like terms.
-880x+4x^{2}=16000-44800
Subtract 44800 from both sides.
-880x+4x^{2}=-28800
Subtract 44800 from 16000 to get -28800.
4x^{2}-880x=-28800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-880x}{4}=-\frac{28800}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{880}{4}\right)x=-\frac{28800}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-220x=-\frac{28800}{4}
Divide -880 by 4.
x^{2}-220x=-7200
Divide -28800 by 4.
x^{2}-220x+\left(-110\right)^{2}=-7200+\left(-110\right)^{2}
Divide -220, the coefficient of the x term, by 2 to get -110. Then add the square of -110 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-220x+12100=-7200+12100
Square -110.
x^{2}-220x+12100=4900
Add -7200 to 12100.
\left(x-110\right)^{2}=4900
Factor x^{2}-220x+12100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-110\right)^{2}}=\sqrt{4900}
Take the square root of both sides of the equation.
x-110=70 x-110=-70
Simplify.
x=180 x=40
Add 110 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}