Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

26x^{2}+1.6x=29.6
Use the distributive property to multiply 26x+1.6 by x.
26x^{2}+1.6x-29.6=0
Subtract 29.6 from both sides.
x=\frac{-1.6±\sqrt{1.6^{2}-4\times 26\left(-29.6\right)}}{2\times 26}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 26 for a, 1.6 for b, and -29.6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.6±\sqrt{2.56-4\times 26\left(-29.6\right)}}{2\times 26}
Square 1.6 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.6±\sqrt{2.56-104\left(-29.6\right)}}{2\times 26}
Multiply -4 times 26.
x=\frac{-1.6±\sqrt{2.56+3078.4}}{2\times 26}
Multiply -104 times -29.6.
x=\frac{-1.6±\sqrt{3080.96}}{2\times 26}
Add 2.56 to 3078.4 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-1.6±\frac{4\sqrt{4814}}{5}}{2\times 26}
Take the square root of 3080.96.
x=\frac{-1.6±\frac{4\sqrt{4814}}{5}}{52}
Multiply 2 times 26.
x=\frac{4\sqrt{4814}-8}{5\times 52}
Now solve the equation x=\frac{-1.6±\frac{4\sqrt{4814}}{5}}{52} when ± is plus. Add -1.6 to \frac{4\sqrt{4814}}{5}.
x=\frac{\sqrt{4814}-2}{65}
Divide \frac{-8+4\sqrt{4814}}{5} by 52.
x=\frac{-4\sqrt{4814}-8}{5\times 52}
Now solve the equation x=\frac{-1.6±\frac{4\sqrt{4814}}{5}}{52} when ± is minus. Subtract \frac{4\sqrt{4814}}{5} from -1.6.
x=\frac{-\sqrt{4814}-2}{65}
Divide \frac{-8-4\sqrt{4814}}{5} by 52.
x=\frac{\sqrt{4814}-2}{65} x=\frac{-\sqrt{4814}-2}{65}
The equation is now solved.
26x^{2}+1.6x=29.6
Use the distributive property to multiply 26x+1.6 by x.
\frac{26x^{2}+1.6x}{26}=\frac{29.6}{26}
Divide both sides by 26.
x^{2}+\frac{1.6}{26}x=\frac{29.6}{26}
Dividing by 26 undoes the multiplication by 26.
x^{2}+\frac{4}{65}x=\frac{29.6}{26}
Divide 1.6 by 26.
x^{2}+\frac{4}{65}x=\frac{74}{65}
Divide 29.6 by 26.
x^{2}+\frac{4}{65}x+\frac{2}{65}^{2}=\frac{74}{65}+\frac{2}{65}^{2}
Divide \frac{4}{65}, the coefficient of the x term, by 2 to get \frac{2}{65}. Then add the square of \frac{2}{65} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{65}x+\frac{4}{4225}=\frac{74}{65}+\frac{4}{4225}
Square \frac{2}{65} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{65}x+\frac{4}{4225}=\frac{4814}{4225}
Add \frac{74}{65} to \frac{4}{4225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{65}\right)^{2}=\frac{4814}{4225}
Factor x^{2}+\frac{4}{65}x+\frac{4}{4225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{65}\right)^{2}}=\sqrt{\frac{4814}{4225}}
Take the square root of both sides of the equation.
x+\frac{2}{65}=\frac{\sqrt{4814}}{65} x+\frac{2}{65}=-\frac{\sqrt{4814}}{65}
Simplify.
x=\frac{\sqrt{4814}-2}{65} x=\frac{-\sqrt{4814}-2}{65}
Subtract \frac{2}{65} from both sides of the equation.