Evaluate
\frac{102x}{5}-0.48
Expand
\frac{102x}{5}-0.48
Graph
Share
Copied to clipboard
22x-0.8-\left(4x\times \frac{2}{5}-0.8\times \frac{2}{5}\right)
Use the distributive property to multiply 4x-0.8 by \frac{2}{5}.
22x-0.8-\left(\frac{4\times 2}{5}x-0.8\times \frac{2}{5}\right)
Express 4\times \frac{2}{5} as a single fraction.
22x-0.8-\left(\frac{8}{5}x-0.8\times \frac{2}{5}\right)
Multiply 4 and 2 to get 8.
22x-0.8-\left(\frac{8}{5}x-\frac{4}{5}\times \frac{2}{5}\right)
Convert decimal number -0.8 to fraction -\frac{8}{10}. Reduce the fraction -\frac{8}{10} to lowest terms by extracting and canceling out 2.
22x-0.8-\left(\frac{8}{5}x+\frac{-4\times 2}{5\times 5}\right)
Multiply -\frac{4}{5} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
22x-0.8-\left(\frac{8}{5}x+\frac{-8}{25}\right)
Do the multiplications in the fraction \frac{-4\times 2}{5\times 5}.
22x-0.8-\left(\frac{8}{5}x-\frac{8}{25}\right)
Fraction \frac{-8}{25} can be rewritten as -\frac{8}{25} by extracting the negative sign.
22x-0.8-\frac{8}{5}x-\left(-\frac{8}{25}\right)
To find the opposite of \frac{8}{5}x-\frac{8}{25}, find the opposite of each term.
22x-0.8-\frac{8}{5}x+\frac{8}{25}
The opposite of -\frac{8}{25} is \frac{8}{25}.
\frac{102}{5}x-0.8+\frac{8}{25}
Combine 22x and -\frac{8}{5}x to get \frac{102}{5}x.
\frac{102}{5}x-\frac{4}{5}+\frac{8}{25}
Convert decimal number -0.8 to fraction -\frac{8}{10}. Reduce the fraction -\frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{102}{5}x-\frac{20}{25}+\frac{8}{25}
Least common multiple of 5 and 25 is 25. Convert -\frac{4}{5} and \frac{8}{25} to fractions with denominator 25.
\frac{102}{5}x+\frac{-20+8}{25}
Since -\frac{20}{25} and \frac{8}{25} have the same denominator, add them by adding their numerators.
\frac{102}{5}x-\frac{12}{25}
Add -20 and 8 to get -12.
22x-0.8-\left(4x\times \frac{2}{5}-0.8\times \frac{2}{5}\right)
Use the distributive property to multiply 4x-0.8 by \frac{2}{5}.
22x-0.8-\left(\frac{4\times 2}{5}x-0.8\times \frac{2}{5}\right)
Express 4\times \frac{2}{5} as a single fraction.
22x-0.8-\left(\frac{8}{5}x-0.8\times \frac{2}{5}\right)
Multiply 4 and 2 to get 8.
22x-0.8-\left(\frac{8}{5}x-\frac{4}{5}\times \frac{2}{5}\right)
Convert decimal number -0.8 to fraction -\frac{8}{10}. Reduce the fraction -\frac{8}{10} to lowest terms by extracting and canceling out 2.
22x-0.8-\left(\frac{8}{5}x+\frac{-4\times 2}{5\times 5}\right)
Multiply -\frac{4}{5} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
22x-0.8-\left(\frac{8}{5}x+\frac{-8}{25}\right)
Do the multiplications in the fraction \frac{-4\times 2}{5\times 5}.
22x-0.8-\left(\frac{8}{5}x-\frac{8}{25}\right)
Fraction \frac{-8}{25} can be rewritten as -\frac{8}{25} by extracting the negative sign.
22x-0.8-\frac{8}{5}x-\left(-\frac{8}{25}\right)
To find the opposite of \frac{8}{5}x-\frac{8}{25}, find the opposite of each term.
22x-0.8-\frac{8}{5}x+\frac{8}{25}
The opposite of -\frac{8}{25} is \frac{8}{25}.
\frac{102}{5}x-0.8+\frac{8}{25}
Combine 22x and -\frac{8}{5}x to get \frac{102}{5}x.
\frac{102}{5}x-\frac{4}{5}+\frac{8}{25}
Convert decimal number -0.8 to fraction -\frac{8}{10}. Reduce the fraction -\frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{102}{5}x-\frac{20}{25}+\frac{8}{25}
Least common multiple of 5 and 25 is 25. Convert -\frac{4}{5} and \frac{8}{25} to fractions with denominator 25.
\frac{102}{5}x+\frac{-20+8}{25}
Since -\frac{20}{25} and \frac{8}{25} have the same denominator, add them by adding their numerators.
\frac{102}{5}x-\frac{12}{25}
Add -20 and 8 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}