Solve for x
x = \frac{494}{3} = 164\frac{2}{3} \approx 164.666666667
Graph
Share
Copied to clipboard
10\left(225\times \frac{x}{10}-\left(180+5\right)\right)-\frac{2}{37}\times 3700=35000
Multiply both sides of the equation by 10.
10\left(\frac{225x}{10}-\left(180+5\right)\right)-\frac{2}{37}\times 3700=35000
Express 225\times \frac{x}{10} as a single fraction.
10\left(\frac{225x}{10}-185\right)-\frac{2}{37}\times 3700=35000
Add 180 and 5 to get 185.
10\times \frac{225x}{10}-1850-\frac{2}{37}\times 3700=35000
Use the distributive property to multiply 10 by \frac{225x}{10}-185.
10\times \frac{45}{2}x-1850-\frac{2}{37}\times 3700=35000
Divide 225x by 10 to get \frac{45}{2}x.
\frac{10\times 45}{2}x-1850-\frac{2}{37}\times 3700=35000
Express 10\times \frac{45}{2} as a single fraction.
\frac{450}{2}x-1850-\frac{2}{37}\times 3700=35000
Multiply 10 and 45 to get 450.
225x-1850-\frac{2}{37}\times 3700=35000
Divide 450 by 2 to get 225.
225x-1850+\frac{-2\times 3700}{37}=35000
Express -\frac{2}{37}\times 3700 as a single fraction.
225x-1850+\frac{-7400}{37}=35000
Multiply -2 and 3700 to get -7400.
225x-1850-200=35000
Divide -7400 by 37 to get -200.
225x-2050=35000
Subtract 200 from -1850 to get -2050.
225x=35000+2050
Add 2050 to both sides.
225x=37050
Add 35000 and 2050 to get 37050.
x=\frac{37050}{225}
Divide both sides by 225.
x=\frac{494}{3}
Reduce the fraction \frac{37050}{225} to lowest terms by extracting and canceling out 75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}