Solve for x
x=10\sqrt{113}+130\approx 236.301458127
x=130-10\sqrt{113}\approx 23.698541873
Graph
Share
Copied to clipboard
60000-1300x+5x^{2}=32000
Use the distributive property to multiply 200-x by 300-5x and combine like terms.
60000-1300x+5x^{2}-32000=0
Subtract 32000 from both sides.
28000-1300x+5x^{2}=0
Subtract 32000 from 60000 to get 28000.
5x^{2}-1300x+28000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1300\right)±\sqrt{\left(-1300\right)^{2}-4\times 5\times 28000}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -1300 for b, and 28000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1300\right)±\sqrt{1690000-4\times 5\times 28000}}{2\times 5}
Square -1300.
x=\frac{-\left(-1300\right)±\sqrt{1690000-20\times 28000}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-1300\right)±\sqrt{1690000-560000}}{2\times 5}
Multiply -20 times 28000.
x=\frac{-\left(-1300\right)±\sqrt{1130000}}{2\times 5}
Add 1690000 to -560000.
x=\frac{-\left(-1300\right)±100\sqrt{113}}{2\times 5}
Take the square root of 1130000.
x=\frac{1300±100\sqrt{113}}{2\times 5}
The opposite of -1300 is 1300.
x=\frac{1300±100\sqrt{113}}{10}
Multiply 2 times 5.
x=\frac{100\sqrt{113}+1300}{10}
Now solve the equation x=\frac{1300±100\sqrt{113}}{10} when ± is plus. Add 1300 to 100\sqrt{113}.
x=10\sqrt{113}+130
Divide 1300+100\sqrt{113} by 10.
x=\frac{1300-100\sqrt{113}}{10}
Now solve the equation x=\frac{1300±100\sqrt{113}}{10} when ± is minus. Subtract 100\sqrt{113} from 1300.
x=130-10\sqrt{113}
Divide 1300-100\sqrt{113} by 10.
x=10\sqrt{113}+130 x=130-10\sqrt{113}
The equation is now solved.
60000-1300x+5x^{2}=32000
Use the distributive property to multiply 200-x by 300-5x and combine like terms.
-1300x+5x^{2}=32000-60000
Subtract 60000 from both sides.
-1300x+5x^{2}=-28000
Subtract 60000 from 32000 to get -28000.
5x^{2}-1300x=-28000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}-1300x}{5}=-\frac{28000}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{1300}{5}\right)x=-\frac{28000}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-260x=-\frac{28000}{5}
Divide -1300 by 5.
x^{2}-260x=-5600
Divide -28000 by 5.
x^{2}-260x+\left(-130\right)^{2}=-5600+\left(-130\right)^{2}
Divide -260, the coefficient of the x term, by 2 to get -130. Then add the square of -130 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-260x+16900=-5600+16900
Square -130.
x^{2}-260x+16900=11300
Add -5600 to 16900.
\left(x-130\right)^{2}=11300
Factor x^{2}-260x+16900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-130\right)^{2}}=\sqrt{11300}
Take the square root of both sides of the equation.
x-130=10\sqrt{113} x-130=-10\sqrt{113}
Simplify.
x=10\sqrt{113}+130 x=130-10\sqrt{113}
Add 130 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}