Solve for x
x=5\sqrt{406}+95\approx 195.747208398
x=95-5\sqrt{406}\approx -5.747208398
Graph
Share
Copied to clipboard
4000+380x-2x^{2}=1750
Use the distributive property to multiply 200-x by 20+2x and combine like terms.
4000+380x-2x^{2}-1750=0
Subtract 1750 from both sides.
2250+380x-2x^{2}=0
Subtract 1750 from 4000 to get 2250.
-2x^{2}+380x+2250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-380±\sqrt{380^{2}-4\left(-2\right)\times 2250}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 380 for b, and 2250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-380±\sqrt{144400-4\left(-2\right)\times 2250}}{2\left(-2\right)}
Square 380.
x=\frac{-380±\sqrt{144400+8\times 2250}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-380±\sqrt{144400+18000}}{2\left(-2\right)}
Multiply 8 times 2250.
x=\frac{-380±\sqrt{162400}}{2\left(-2\right)}
Add 144400 to 18000.
x=\frac{-380±20\sqrt{406}}{2\left(-2\right)}
Take the square root of 162400.
x=\frac{-380±20\sqrt{406}}{-4}
Multiply 2 times -2.
x=\frac{20\sqrt{406}-380}{-4}
Now solve the equation x=\frac{-380±20\sqrt{406}}{-4} when ± is plus. Add -380 to 20\sqrt{406}.
x=95-5\sqrt{406}
Divide -380+20\sqrt{406} by -4.
x=\frac{-20\sqrt{406}-380}{-4}
Now solve the equation x=\frac{-380±20\sqrt{406}}{-4} when ± is minus. Subtract 20\sqrt{406} from -380.
x=5\sqrt{406}+95
Divide -380-20\sqrt{406} by -4.
x=95-5\sqrt{406} x=5\sqrt{406}+95
The equation is now solved.
4000+380x-2x^{2}=1750
Use the distributive property to multiply 200-x by 20+2x and combine like terms.
380x-2x^{2}=1750-4000
Subtract 4000 from both sides.
380x-2x^{2}=-2250
Subtract 4000 from 1750 to get -2250.
-2x^{2}+380x=-2250
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+380x}{-2}=-\frac{2250}{-2}
Divide both sides by -2.
x^{2}+\frac{380}{-2}x=-\frac{2250}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-190x=-\frac{2250}{-2}
Divide 380 by -2.
x^{2}-190x=1125
Divide -2250 by -2.
x^{2}-190x+\left(-95\right)^{2}=1125+\left(-95\right)^{2}
Divide -190, the coefficient of the x term, by 2 to get -95. Then add the square of -95 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-190x+9025=1125+9025
Square -95.
x^{2}-190x+9025=10150
Add 1125 to 9025.
\left(x-95\right)^{2}=10150
Factor x^{2}-190x+9025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-95\right)^{2}}=\sqrt{10150}
Take the square root of both sides of the equation.
x-95=5\sqrt{406} x-95=-5\sqrt{406}
Simplify.
x=5\sqrt{406}+95 x=95-5\sqrt{406}
Add 95 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}