Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1000-10x-2x^{2}=700
Use the distributive property to multiply 20-x by 50+2x and combine like terms.
1000-10x-2x^{2}-700=0
Subtract 700 from both sides.
300-10x-2x^{2}=0
Subtract 700 from 1000 to get 300.
-2x^{2}-10x+300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-2\right)\times 300}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -10 for b, and 300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-2\right)\times 300}}{2\left(-2\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+8\times 300}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-10\right)±\sqrt{100+2400}}{2\left(-2\right)}
Multiply 8 times 300.
x=\frac{-\left(-10\right)±\sqrt{2500}}{2\left(-2\right)}
Add 100 to 2400.
x=\frac{-\left(-10\right)±50}{2\left(-2\right)}
Take the square root of 2500.
x=\frac{10±50}{2\left(-2\right)}
The opposite of -10 is 10.
x=\frac{10±50}{-4}
Multiply 2 times -2.
x=\frac{60}{-4}
Now solve the equation x=\frac{10±50}{-4} when ± is plus. Add 10 to 50.
x=-15
Divide 60 by -4.
x=-\frac{40}{-4}
Now solve the equation x=\frac{10±50}{-4} when ± is minus. Subtract 50 from 10.
x=10
Divide -40 by -4.
x=-15 x=10
The equation is now solved.
1000-10x-2x^{2}=700
Use the distributive property to multiply 20-x by 50+2x and combine like terms.
-10x-2x^{2}=700-1000
Subtract 1000 from both sides.
-10x-2x^{2}=-300
Subtract 1000 from 700 to get -300.
-2x^{2}-10x=-300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-10x}{-2}=-\frac{300}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{10}{-2}\right)x=-\frac{300}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+5x=-\frac{300}{-2}
Divide -10 by -2.
x^{2}+5x=150
Divide -300 by -2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=150+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=150+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{625}{4}
Add 150 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{625}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{25}{2} x+\frac{5}{2}=-\frac{25}{2}
Simplify.
x=10 x=-15
Subtract \frac{5}{2} from both sides of the equation.