Solve for x
x=50
x=2
Graph
Share
Copied to clipboard
640-52x+x^{2}=540
Use the distributive property to multiply 20-x by 32-x and combine like terms.
640-52x+x^{2}-540=0
Subtract 540 from both sides.
100-52x+x^{2}=0
Subtract 540 from 640 to get 100.
x^{2}-52x+100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 100}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -52 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 100}}{2}
Square -52.
x=\frac{-\left(-52\right)±\sqrt{2704-400}}{2}
Multiply -4 times 100.
x=\frac{-\left(-52\right)±\sqrt{2304}}{2}
Add 2704 to -400.
x=\frac{-\left(-52\right)±48}{2}
Take the square root of 2304.
x=\frac{52±48}{2}
The opposite of -52 is 52.
x=\frac{100}{2}
Now solve the equation x=\frac{52±48}{2} when ± is plus. Add 52 to 48.
x=50
Divide 100 by 2.
x=\frac{4}{2}
Now solve the equation x=\frac{52±48}{2} when ± is minus. Subtract 48 from 52.
x=2
Divide 4 by 2.
x=50 x=2
The equation is now solved.
640-52x+x^{2}=540
Use the distributive property to multiply 20-x by 32-x and combine like terms.
-52x+x^{2}=540-640
Subtract 640 from both sides.
-52x+x^{2}=-100
Subtract 640 from 540 to get -100.
x^{2}-52x=-100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-52x+\left(-26\right)^{2}=-100+\left(-26\right)^{2}
Divide -52, the coefficient of the x term, by 2 to get -26. Then add the square of -26 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-52x+676=-100+676
Square -26.
x^{2}-52x+676=576
Add -100 to 676.
\left(x-26\right)^{2}=576
Factor x^{2}-52x+676. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-26\right)^{2}}=\sqrt{576}
Take the square root of both sides of the equation.
x-26=24 x-26=-24
Simplify.
x=50 x=2
Add 26 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}