Solve for x
x=1
x=4
Graph
Share
Copied to clipboard
6000+100x-20x^{2}=6080
Use the distributive property to multiply 20-x by 300+20x and combine like terms.
6000+100x-20x^{2}-6080=0
Subtract 6080 from both sides.
-80+100x-20x^{2}=0
Subtract 6080 from 6000 to get -80.
-20x^{2}+100x-80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-20\right)\left(-80\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 100 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-20\right)\left(-80\right)}}{2\left(-20\right)}
Square 100.
x=\frac{-100±\sqrt{10000+80\left(-80\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-100±\sqrt{10000-6400}}{2\left(-20\right)}
Multiply 80 times -80.
x=\frac{-100±\sqrt{3600}}{2\left(-20\right)}
Add 10000 to -6400.
x=\frac{-100±60}{2\left(-20\right)}
Take the square root of 3600.
x=\frac{-100±60}{-40}
Multiply 2 times -20.
x=-\frac{40}{-40}
Now solve the equation x=\frac{-100±60}{-40} when ± is plus. Add -100 to 60.
x=1
Divide -40 by -40.
x=-\frac{160}{-40}
Now solve the equation x=\frac{-100±60}{-40} when ± is minus. Subtract 60 from -100.
x=4
Divide -160 by -40.
x=1 x=4
The equation is now solved.
6000+100x-20x^{2}=6080
Use the distributive property to multiply 20-x by 300+20x and combine like terms.
100x-20x^{2}=6080-6000
Subtract 6000 from both sides.
100x-20x^{2}=80
Subtract 6000 from 6080 to get 80.
-20x^{2}+100x=80
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+100x}{-20}=\frac{80}{-20}
Divide both sides by -20.
x^{2}+\frac{100}{-20}x=\frac{80}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-5x=\frac{80}{-20}
Divide 100 by -20.
x^{2}-5x=-4
Divide 80 by -20.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Add -4 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Simplify.
x=4 x=1
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}