Solve for x
x=15
x=1
Graph
Share
Copied to clipboard
240-64x+4x^{2}=180
Use the distributive property to multiply 20-2x by 12-2x and combine like terms.
240-64x+4x^{2}-180=0
Subtract 180 from both sides.
60-64x+4x^{2}=0
Subtract 180 from 240 to get 60.
4x^{2}-64x+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 4\times 60}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -64 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 4\times 60}}{2\times 4}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096-16\times 60}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-64\right)±\sqrt{4096-960}}{2\times 4}
Multiply -16 times 60.
x=\frac{-\left(-64\right)±\sqrt{3136}}{2\times 4}
Add 4096 to -960.
x=\frac{-\left(-64\right)±56}{2\times 4}
Take the square root of 3136.
x=\frac{64±56}{2\times 4}
The opposite of -64 is 64.
x=\frac{64±56}{8}
Multiply 2 times 4.
x=\frac{120}{8}
Now solve the equation x=\frac{64±56}{8} when ± is plus. Add 64 to 56.
x=15
Divide 120 by 8.
x=\frac{8}{8}
Now solve the equation x=\frac{64±56}{8} when ± is minus. Subtract 56 from 64.
x=1
Divide 8 by 8.
x=15 x=1
The equation is now solved.
240-64x+4x^{2}=180
Use the distributive property to multiply 20-2x by 12-2x and combine like terms.
-64x+4x^{2}=180-240
Subtract 240 from both sides.
-64x+4x^{2}=-60
Subtract 240 from 180 to get -60.
4x^{2}-64x=-60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-64x}{4}=-\frac{60}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{64}{4}\right)x=-\frac{60}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-16x=-\frac{60}{4}
Divide -64 by 4.
x^{2}-16x=-15
Divide -60 by 4.
x^{2}-16x+\left(-8\right)^{2}=-15+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-15+64
Square -8.
x^{2}-16x+64=49
Add -15 to 64.
\left(x-8\right)^{2}=49
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
x-8=7 x-8=-7
Simplify.
x=15 x=1
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}