Evaluate
\frac{105}{4}=26.25
Factor
\frac{3 \cdot 5 \cdot 7}{2 ^ {2}} = 26\frac{1}{4} = 26.25
Share
Copied to clipboard
\frac{20\times 5}{4}+3\times \frac{1}{2}-\frac{1}{4}
Express 20\times \frac{5}{4} as a single fraction.
\frac{100}{4}+3\times \frac{1}{2}-\frac{1}{4}
Multiply 20 and 5 to get 100.
25+3\times \frac{1}{2}-\frac{1}{4}
Divide 100 by 4 to get 25.
25+\frac{3}{2}-\frac{1}{4}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{50}{2}+\frac{3}{2}-\frac{1}{4}
Convert 25 to fraction \frac{50}{2}.
\frac{50+3}{2}-\frac{1}{4}
Since \frac{50}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{53}{2}-\frac{1}{4}
Add 50 and 3 to get 53.
\frac{106}{4}-\frac{1}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{53}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{106-1}{4}
Since \frac{106}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{105}{4}
Subtract 1 from 106 to get 105.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}