Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(2-\frac{\frac{2\left(-1\right)}{3}}{\frac{5}{2}}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Express 2\left(-\frac{1}{3}\right) as a single fraction.
\left(2-\frac{\frac{-2}{3}}{\frac{5}{2}}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Multiply 2 and -1 to get -2.
\left(2-\frac{-\frac{2}{3}}{\frac{5}{2}}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\left(2-\left(-\frac{2}{3}\times \frac{2}{5}\right)-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Divide -\frac{2}{3} by \frac{5}{2} by multiplying -\frac{2}{3} by the reciprocal of \frac{5}{2}.
\left(2-\frac{-2\times 2}{3\times 5}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Multiply -\frac{2}{3} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\left(2-\frac{-4}{15}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Do the multiplications in the fraction \frac{-2\times 2}{3\times 5}.
\left(2-\left(-\frac{4}{15}\right)-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Fraction \frac{-4}{15} can be rewritten as -\frac{4}{15} by extracting the negative sign.
\left(2+\frac{4}{15}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
The opposite of -\frac{4}{15} is \frac{4}{15}.
\left(\frac{30}{15}+\frac{4}{15}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Convert 2 to fraction \frac{30}{15}.
\left(\frac{30+4}{15}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Since \frac{30}{15} and \frac{4}{15} have the same denominator, add them by adding their numerators.
\left(\frac{34}{15}-\frac{3}{5}\right)\left(-\frac{1}{3}\right)+1
Add 30 and 4 to get 34.
\left(\frac{34}{15}-\frac{9}{15}\right)\left(-\frac{1}{3}\right)+1
Least common multiple of 15 and 5 is 15. Convert \frac{34}{15} and \frac{3}{5} to fractions with denominator 15.
\frac{34-9}{15}\left(-\frac{1}{3}\right)+1
Since \frac{34}{15} and \frac{9}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{15}\left(-\frac{1}{3}\right)+1
Subtract 9 from 34 to get 25.
\frac{5}{3}\left(-\frac{1}{3}\right)+1
Reduce the fraction \frac{25}{15} to lowest terms by extracting and canceling out 5.
\frac{5\left(-1\right)}{3\times 3}+1
Multiply \frac{5}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-5}{9}+1
Do the multiplications in the fraction \frac{5\left(-1\right)}{3\times 3}.
-\frac{5}{9}+1
Fraction \frac{-5}{9} can be rewritten as -\frac{5}{9} by extracting the negative sign.
-\frac{5}{9}+\frac{9}{9}
Convert 1 to fraction \frac{9}{9}.
\frac{-5+9}{9}
Since -\frac{5}{9} and \frac{9}{9} have the same denominator, add them by adding their numerators.
\frac{4}{9}
Add -5 and 9 to get 4.