Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\times \frac{3}{4}x+2\times \frac{9}{4}-\frac{3}{2}x\times \frac{3}{4}x-\frac{3}{2}x\times \frac{9}{4}
Apply the distributive property by multiplying each term of 2-\frac{3}{2}x by each term of \frac{3}{4}x+\frac{9}{4}.
2\times \frac{3}{4}x+2\times \frac{9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Multiply x and x to get x^{2}.
\frac{2\times 3}{4}x+2\times \frac{9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Express 2\times \frac{3}{4} as a single fraction.
\frac{6}{4}x+2\times \frac{9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Multiply 2 and 3 to get 6.
\frac{3}{2}x+2\times \frac{9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}x+\frac{2\times 9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Express 2\times \frac{9}{4} as a single fraction.
\frac{3}{2}x+\frac{18}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Multiply 2 and 9 to get 18.
\frac{3}{2}x+\frac{9}{2}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}x+\frac{9}{2}+\frac{-3\times 3}{2\times 4}x^{2}-\frac{3}{2}x\times \frac{9}{4}
Multiply -\frac{3}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x+\frac{9}{2}+\frac{-9}{8}x^{2}-\frac{3}{2}x\times \frac{9}{4}
Do the multiplications in the fraction \frac{-3\times 3}{2\times 4}.
\frac{3}{2}x+\frac{9}{2}-\frac{9}{8}x^{2}-\frac{3}{2}x\times \frac{9}{4}
Fraction \frac{-9}{8} can be rewritten as -\frac{9}{8} by extracting the negative sign.
\frac{3}{2}x+\frac{9}{2}-\frac{9}{8}x^{2}+\frac{-3\times 9}{2\times 4}x
Multiply -\frac{3}{2} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x+\frac{9}{2}-\frac{9}{8}x^{2}+\frac{-27}{8}x
Do the multiplications in the fraction \frac{-3\times 9}{2\times 4}.
\frac{3}{2}x+\frac{9}{2}-\frac{9}{8}x^{2}-\frac{27}{8}x
Fraction \frac{-27}{8} can be rewritten as -\frac{27}{8} by extracting the negative sign.
-\frac{15}{8}x+\frac{9}{2}-\frac{9}{8}x^{2}
Combine \frac{3}{2}x and -\frac{27}{8}x to get -\frac{15}{8}x.
2\times \frac{3}{4}x+2\times \frac{9}{4}-\frac{3}{2}x\times \frac{3}{4}x-\frac{3}{2}x\times \frac{9}{4}
Apply the distributive property by multiplying each term of 2-\frac{3}{2}x by each term of \frac{3}{4}x+\frac{9}{4}.
2\times \frac{3}{4}x+2\times \frac{9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Multiply x and x to get x^{2}.
\frac{2\times 3}{4}x+2\times \frac{9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Express 2\times \frac{3}{4} as a single fraction.
\frac{6}{4}x+2\times \frac{9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Multiply 2 and 3 to get 6.
\frac{3}{2}x+2\times \frac{9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}x+\frac{2\times 9}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Express 2\times \frac{9}{4} as a single fraction.
\frac{3}{2}x+\frac{18}{4}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Multiply 2 and 9 to get 18.
\frac{3}{2}x+\frac{9}{2}-\frac{3}{2}x^{2}\times \frac{3}{4}-\frac{3}{2}x\times \frac{9}{4}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}x+\frac{9}{2}+\frac{-3\times 3}{2\times 4}x^{2}-\frac{3}{2}x\times \frac{9}{4}
Multiply -\frac{3}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x+\frac{9}{2}+\frac{-9}{8}x^{2}-\frac{3}{2}x\times \frac{9}{4}
Do the multiplications in the fraction \frac{-3\times 3}{2\times 4}.
\frac{3}{2}x+\frac{9}{2}-\frac{9}{8}x^{2}-\frac{3}{2}x\times \frac{9}{4}
Fraction \frac{-9}{8} can be rewritten as -\frac{9}{8} by extracting the negative sign.
\frac{3}{2}x+\frac{9}{2}-\frac{9}{8}x^{2}+\frac{-3\times 9}{2\times 4}x
Multiply -\frac{3}{2} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x+\frac{9}{2}-\frac{9}{8}x^{2}+\frac{-27}{8}x
Do the multiplications in the fraction \frac{-3\times 9}{2\times 4}.
\frac{3}{2}x+\frac{9}{2}-\frac{9}{8}x^{2}-\frac{27}{8}x
Fraction \frac{-27}{8} can be rewritten as -\frac{27}{8} by extracting the negative sign.
-\frac{15}{8}x+\frac{9}{2}-\frac{9}{8}x^{2}
Combine \frac{3}{2}x and -\frac{27}{8}x to get -\frac{15}{8}x.