(2+a = \left( 1+a \right) x
Solve for a
a=-\frac{2-x}{1-x}
x\neq 1
Solve for x
x=\frac{a+2}{a+1}
a\neq -1
Graph
Share
Copied to clipboard
2+a=x+ax
Use the distributive property to multiply 1+a by x.
2+a-ax=x
Subtract ax from both sides.
a-ax=x-2
Subtract 2 from both sides.
\left(1-x\right)a=x-2
Combine all terms containing a.
\frac{\left(1-x\right)a}{1-x}=\frac{x-2}{1-x}
Divide both sides by -x+1.
a=\frac{x-2}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
2+a=x+ax
Use the distributive property to multiply 1+a by x.
x+ax=2+a
Swap sides so that all variable terms are on the left hand side.
\left(1+a\right)x=2+a
Combine all terms containing x.
\left(a+1\right)x=a+2
The equation is in standard form.
\frac{\left(a+1\right)x}{a+1}=\frac{a+2}{a+1}
Divide both sides by 1+a.
x=\frac{a+2}{a+1}
Dividing by 1+a undoes the multiplication by 1+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}