Solve for x
x = \frac{18}{5} = 3\frac{3}{5} = 3.6
Graph
Share
Copied to clipboard
2+\frac{4}{6}=\frac{2}{9}x\left(3+\frac{3}{9}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2+\frac{2}{3}=\frac{2}{9}x\left(3+\frac{3}{9}\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{6}{3}+\frac{2}{3}=\frac{2}{9}x\left(3+\frac{3}{9}\right)
Convert 2 to fraction \frac{6}{3}.
\frac{6+2}{3}=\frac{2}{9}x\left(3+\frac{3}{9}\right)
Since \frac{6}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{8}{3}=\frac{2}{9}x\left(3+\frac{3}{9}\right)
Add 6 and 2 to get 8.
\frac{8}{3}=\frac{2}{9}x\left(3+\frac{1}{3}\right)
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{8}{3}=\frac{2}{9}x\left(\frac{9}{3}+\frac{1}{3}\right)
Convert 3 to fraction \frac{9}{3}.
\frac{8}{3}=\frac{2}{9}x\times \frac{9+1}{3}
Since \frac{9}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{8}{3}=\frac{2}{9}x\times \frac{10}{3}
Add 9 and 1 to get 10.
\frac{8}{3}=\frac{2\times 10}{9\times 3}x
Multiply \frac{2}{9} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{3}=\frac{20}{27}x
Do the multiplications in the fraction \frac{2\times 10}{9\times 3}.
\frac{20}{27}x=\frac{8}{3}
Swap sides so that all variable terms are on the left hand side.
x=\frac{8}{3}\times \frac{27}{20}
Multiply both sides by \frac{27}{20}, the reciprocal of \frac{20}{27}.
x=\frac{8\times 27}{3\times 20}
Multiply \frac{8}{3} times \frac{27}{20} by multiplying numerator times numerator and denominator times denominator.
x=\frac{216}{60}
Do the multiplications in the fraction \frac{8\times 27}{3\times 20}.
x=\frac{18}{5}
Reduce the fraction \frac{216}{60} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}