Solve for x
x=\sqrt{7}\approx 2.645751311
x=-\sqrt{7}\approx -2.645751311
Graph
Share
Copied to clipboard
2x^{2}+15x-8-\left(x-1\right)\left(x+1\right)=15x
Use the distributive property to multiply 2x-1 by x+8 and combine like terms.
2x^{2}+15x-8-\left(x^{2}-1\right)=15x
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2x^{2}+15x-8-x^{2}+1=15x
To find the opposite of x^{2}-1, find the opposite of each term.
x^{2}+15x-8+1=15x
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+15x-7=15x
Add -8 and 1 to get -7.
x^{2}+15x-7-15x=0
Subtract 15x from both sides.
x^{2}-7=0
Combine 15x and -15x to get 0.
x^{2}=7
Add 7 to both sides. Anything plus zero gives itself.
x=\sqrt{7} x=-\sqrt{7}
Take the square root of both sides of the equation.
2x^{2}+15x-8-\left(x-1\right)\left(x+1\right)=15x
Use the distributive property to multiply 2x-1 by x+8 and combine like terms.
2x^{2}+15x-8-\left(x^{2}-1\right)=15x
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2x^{2}+15x-8-x^{2}+1=15x
To find the opposite of x^{2}-1, find the opposite of each term.
x^{2}+15x-8+1=15x
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+15x-7=15x
Add -8 and 1 to get -7.
x^{2}+15x-7-15x=0
Subtract 15x from both sides.
x^{2}-7=0
Combine 15x and -15x to get 0.
x=\frac{0±\sqrt{0^{2}-4\left(-7\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-7\right)}}{2}
Square 0.
x=\frac{0±\sqrt{28}}{2}
Multiply -4 times -7.
x=\frac{0±2\sqrt{7}}{2}
Take the square root of 28.
x=\sqrt{7}
Now solve the equation x=\frac{0±2\sqrt{7}}{2} when ± is plus.
x=-\sqrt{7}
Now solve the equation x=\frac{0±2\sqrt{7}}{2} when ± is minus.
x=\sqrt{7} x=-\sqrt{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}