Evaluate
\frac{5\sqrt{3}}{3}+1\approx 3.886751346
Factor
\frac{\sqrt{3} {(\sqrt{3} + 5)}}{3} = 3.8867513459481287
Share
Copied to clipboard
\left(2\times \frac{\sqrt{3}}{\sqrt{2}}-\sqrt{\frac{1}{2}}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\left(2\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\sqrt{\frac{1}{2}}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(2\times \frac{\sqrt{3}\sqrt{2}}{2}-\sqrt{\frac{1}{2}}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
The square of \sqrt{2} is 2.
\left(2\times \frac{\sqrt{6}}{2}-\sqrt{\frac{1}{2}}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(\sqrt{6}-\sqrt{\frac{1}{2}}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
Cancel out 2 and 2.
\left(\sqrt{6}-\frac{\sqrt{1}}{\sqrt{2}}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\left(\sqrt{6}-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
Calculate the square root of 1 and get 1.
\left(\sqrt{6}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\sqrt{6}-\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
The square of \sqrt{2} is 2.
\left(\frac{2\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{2}{2}.
\frac{2\sqrt{6}-\sqrt{2}}{2}\left(\frac{1}{2}\sqrt{8}+\sqrt{\frac{2}{3}}\right)
Since \frac{2\sqrt{6}}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{6}-\sqrt{2}}{2}\left(\frac{1}{2}\times 2\sqrt{2}+\sqrt{\frac{2}{3}}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{6}-\sqrt{2}}{2}\left(\sqrt{2}+\sqrt{\frac{2}{3}}\right)
Cancel out 2 and 2.
\frac{2\sqrt{6}-\sqrt{2}}{2}\left(\sqrt{2}+\frac{\sqrt{2}}{\sqrt{3}}\right)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{2\sqrt{6}-\sqrt{2}}{2}\left(\sqrt{2}+\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{6}-\sqrt{2}}{2}\left(\sqrt{2}+\frac{\sqrt{2}\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
\frac{2\sqrt{6}-\sqrt{2}}{2}\left(\sqrt{2}+\frac{\sqrt{6}}{3}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{6}-\sqrt{2}}{2}\left(\frac{3\sqrt{2}}{3}+\frac{\sqrt{6}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2} times \frac{3}{3}.
\frac{2\sqrt{6}-\sqrt{2}}{2}\times \frac{3\sqrt{2}+\sqrt{6}}{3}
Since \frac{3\sqrt{2}}{3} and \frac{\sqrt{6}}{3} have the same denominator, add them by adding their numerators.
\frac{\left(2\sqrt{6}-\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{6}\right)}{2\times 3}
Multiply \frac{2\sqrt{6}-\sqrt{2}}{2} times \frac{3\sqrt{2}+\sqrt{6}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2\sqrt{6}-\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{6}\right)}{6}
Multiply 2 and 3 to get 6.
\frac{6\sqrt{6}\sqrt{2}+2\left(\sqrt{6}\right)^{2}-3\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}}{6}
Apply the distributive property by multiplying each term of 2\sqrt{6}-\sqrt{2} by each term of 3\sqrt{2}+\sqrt{6}.
\frac{6\sqrt{2}\sqrt{3}\sqrt{2}+2\left(\sqrt{6}\right)^{2}-3\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}}{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6\times 2\sqrt{3}+2\left(\sqrt{6}\right)^{2}-3\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}}{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{12\sqrt{3}+2\left(\sqrt{6}\right)^{2}-3\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}}{6}
Multiply 6 and 2 to get 12.
\frac{12\sqrt{3}+2\times 6-3\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{12\sqrt{3}+12-3\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}}{6}
Multiply 2 and 6 to get 12.
\frac{12\sqrt{3}+12-3\times 2-\sqrt{2}\sqrt{6}}{6}
The square of \sqrt{2} is 2.
\frac{12\sqrt{3}+12-6-\sqrt{2}\sqrt{6}}{6}
Multiply -3 and 2 to get -6.
\frac{12\sqrt{3}+6-\sqrt{2}\sqrt{6}}{6}
Subtract 6 from 12 to get 6.
\frac{12\sqrt{3}+6-\sqrt{2}\sqrt{2}\sqrt{3}}{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{12\sqrt{3}+6-2\sqrt{3}}{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{10\sqrt{3}+6}{6}
Combine 12\sqrt{3} and -2\sqrt{3} to get 10\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}