Evaluate
\frac{17}{6}\approx 2.833333333
Factor
\frac{17}{2 \cdot 3} = 2\frac{5}{6} = 2.8333333333333335
Share
Copied to clipboard
\left(2\times \frac{\sqrt{2}}{\sqrt{3}}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\left(2\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(2\times \frac{\sqrt{2}\sqrt{3}}{3}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
The square of \sqrt{3} is 3.
\left(2\times \frac{\sqrt{6}}{3}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(\frac{2\sqrt{6}}{3}-5\sqrt{\frac{3}{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Express 2\times \frac{\sqrt{6}}{3} as a single fraction.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{3}}{\sqrt{8}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Rewrite the square root of the division \sqrt{\frac{3}{8}} as the division of square roots \frac{\sqrt{3}}{\sqrt{8}}.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{3}}{2\sqrt{2}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{3}\sqrt{2}}{2\times 2}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
The square of \sqrt{2} is 2.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{6}}{2\times 2}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(\frac{2\sqrt{6}}{3}-5\times \frac{\sqrt{6}}{4}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Multiply 2 and 2 to get 4.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\sqrt{\frac{3}{2}}\right)\sqrt{\frac{2}{3}}
Express -5\times \frac{\sqrt{6}}{4} as a single fraction.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\times \frac{\sqrt{3}}{\sqrt{2}}\right)\sqrt{\frac{2}{3}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)\sqrt{\frac{2}{3}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\times \frac{\sqrt{3}\sqrt{2}}{2}\right)\sqrt{\frac{2}{3}}
The square of \sqrt{2} is 2.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+4\times \frac{\sqrt{6}}{2}\right)\sqrt{\frac{2}{3}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(\frac{2\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}+2\sqrt{6}\right)\sqrt{\frac{2}{3}}
Cancel out 2, the greatest common factor in 4 and 2.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\sqrt{\frac{2}{3}}
Combine \frac{2\sqrt{6}}{3} and 2\sqrt{6} to get \frac{8}{3}\sqrt{6}.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\times \frac{\sqrt{2}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\times \frac{\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\left(\frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\right)\times \frac{\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{8}{3}\sqrt{6}\times \frac{\sqrt{6}}{3}+\frac{-5\sqrt{6}}{4}\times \frac{\sqrt{6}}{3}
Use the distributive property to multiply \frac{8}{3}\sqrt{6}+\frac{-5\sqrt{6}}{4} by \frac{\sqrt{6}}{3}.
\frac{8\sqrt{6}}{3\times 3}\sqrt{6}+\frac{-5\sqrt{6}}{4}\times \frac{\sqrt{6}}{3}
Multiply \frac{8}{3} times \frac{\sqrt{6}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{8\sqrt{6}}{3\times 3}\sqrt{6}+\frac{-5\sqrt{6}\sqrt{6}}{4\times 3}
Multiply \frac{-5\sqrt{6}}{4} times \frac{\sqrt{6}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{8\sqrt{6}}{3\times 3}\sqrt{6}+\frac{-5\times 6}{4\times 3}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{8\sqrt{6}}{9}\sqrt{6}+\frac{-5\times 6}{4\times 3}
Multiply 3 and 3 to get 9.
\frac{8\sqrt{6}\sqrt{6}}{9}+\frac{-5\times 6}{4\times 3}
Express \frac{8\sqrt{6}}{9}\sqrt{6} as a single fraction.
\frac{8\sqrt{6}\sqrt{6}}{9}+\frac{-5}{2}
Cancel out 2\times 3 in both numerator and denominator.
\frac{8\sqrt{6}\sqrt{6}}{9}-\frac{5}{2}
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\frac{2\times 8\sqrt{6}\sqrt{6}}{18}-\frac{5\times 9}{18}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 2 is 18. Multiply \frac{8\sqrt{6}\sqrt{6}}{9} times \frac{2}{2}. Multiply \frac{5}{2} times \frac{9}{9}.
\frac{2\times 8\sqrt{6}\sqrt{6}-5\times 9}{18}
Since \frac{2\times 8\sqrt{6}\sqrt{6}}{18} and \frac{5\times 9}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{96-45}{18}
Do the multiplications in 2\times 8\sqrt{6}\sqrt{6}-5\times 9.
\frac{51}{18}
Do the calculations in 96-45.
\frac{17}{6}
Reduce the fraction \frac{51}{18} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}