Solve for x (complex solution)
x=-\frac{\sqrt{39}i}{3}+3\approx 3-2.081665999i
x=\frac{\sqrt{39}i}{3}+3\approx 3+2.081665999i
Graph
Share
Copied to clipboard
18x-3x^{2}=40
Use the distributive property to multiply 18-3x by x.
18x-3x^{2}-40=0
Subtract 40 from both sides.
-3x^{2}+18x-40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-40\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 18 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-3\right)\left(-40\right)}}{2\left(-3\right)}
Square 18.
x=\frac{-18±\sqrt{324+12\left(-40\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-18±\sqrt{324-480}}{2\left(-3\right)}
Multiply 12 times -40.
x=\frac{-18±\sqrt{-156}}{2\left(-3\right)}
Add 324 to -480.
x=\frac{-18±2\sqrt{39}i}{2\left(-3\right)}
Take the square root of -156.
x=\frac{-18±2\sqrt{39}i}{-6}
Multiply 2 times -3.
x=\frac{-18+2\sqrt{39}i}{-6}
Now solve the equation x=\frac{-18±2\sqrt{39}i}{-6} when ± is plus. Add -18 to 2i\sqrt{39}.
x=-\frac{\sqrt{39}i}{3}+3
Divide -18+2i\sqrt{39} by -6.
x=\frac{-2\sqrt{39}i-18}{-6}
Now solve the equation x=\frac{-18±2\sqrt{39}i}{-6} when ± is minus. Subtract 2i\sqrt{39} from -18.
x=\frac{\sqrt{39}i}{3}+3
Divide -18-2i\sqrt{39} by -6.
x=-\frac{\sqrt{39}i}{3}+3 x=\frac{\sqrt{39}i}{3}+3
The equation is now solved.
18x-3x^{2}=40
Use the distributive property to multiply 18-3x by x.
-3x^{2}+18x=40
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+18x}{-3}=\frac{40}{-3}
Divide both sides by -3.
x^{2}+\frac{18}{-3}x=\frac{40}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-6x=\frac{40}{-3}
Divide 18 by -3.
x^{2}-6x=-\frac{40}{3}
Divide 40 by -3.
x^{2}-6x+\left(-3\right)^{2}=-\frac{40}{3}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{40}{3}+9
Square -3.
x^{2}-6x+9=-\frac{13}{3}
Add -\frac{40}{3} to 9.
\left(x-3\right)^{2}=-\frac{13}{3}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-\frac{13}{3}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{39}i}{3} x-3=-\frac{\sqrt{39}i}{3}
Simplify.
x=\frac{\sqrt{39}i}{3}+3 x=-\frac{\sqrt{39}i}{3}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}