Solve for x
x = \frac{15 \sqrt{65} + 175}{2} \approx 147.966933112
x = \frac{175 - 15 \sqrt{65}}{2} \approx 27.033066888
Graph
Share
Copied to clipboard
175x-x^{2}=4000
Use the distributive property to multiply 175-x by x.
175x-x^{2}-4000=0
Subtract 4000 from both sides.
-x^{2}+175x-4000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-175±\sqrt{175^{2}-4\left(-1\right)\left(-4000\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 175 for b, and -4000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-175±\sqrt{30625-4\left(-1\right)\left(-4000\right)}}{2\left(-1\right)}
Square 175.
x=\frac{-175±\sqrt{30625+4\left(-4000\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-175±\sqrt{30625-16000}}{2\left(-1\right)}
Multiply 4 times -4000.
x=\frac{-175±\sqrt{14625}}{2\left(-1\right)}
Add 30625 to -16000.
x=\frac{-175±15\sqrt{65}}{2\left(-1\right)}
Take the square root of 14625.
x=\frac{-175±15\sqrt{65}}{-2}
Multiply 2 times -1.
x=\frac{15\sqrt{65}-175}{-2}
Now solve the equation x=\frac{-175±15\sqrt{65}}{-2} when ± is plus. Add -175 to 15\sqrt{65}.
x=\frac{175-15\sqrt{65}}{2}
Divide -175+15\sqrt{65} by -2.
x=\frac{-15\sqrt{65}-175}{-2}
Now solve the equation x=\frac{-175±15\sqrt{65}}{-2} when ± is minus. Subtract 15\sqrt{65} from -175.
x=\frac{15\sqrt{65}+175}{2}
Divide -175-15\sqrt{65} by -2.
x=\frac{175-15\sqrt{65}}{2} x=\frac{15\sqrt{65}+175}{2}
The equation is now solved.
175x-x^{2}=4000
Use the distributive property to multiply 175-x by x.
-x^{2}+175x=4000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+175x}{-1}=\frac{4000}{-1}
Divide both sides by -1.
x^{2}+\frac{175}{-1}x=\frac{4000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-175x=\frac{4000}{-1}
Divide 175 by -1.
x^{2}-175x=-4000
Divide 4000 by -1.
x^{2}-175x+\left(-\frac{175}{2}\right)^{2}=-4000+\left(-\frac{175}{2}\right)^{2}
Divide -175, the coefficient of the x term, by 2 to get -\frac{175}{2}. Then add the square of -\frac{175}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-175x+\frac{30625}{4}=-4000+\frac{30625}{4}
Square -\frac{175}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-175x+\frac{30625}{4}=\frac{14625}{4}
Add -4000 to \frac{30625}{4}.
\left(x-\frac{175}{2}\right)^{2}=\frac{14625}{4}
Factor x^{2}-175x+\frac{30625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{175}{2}\right)^{2}}=\sqrt{\frac{14625}{4}}
Take the square root of both sides of the equation.
x-\frac{175}{2}=\frac{15\sqrt{65}}{2} x-\frac{175}{2}=-\frac{15\sqrt{65}}{2}
Simplify.
x=\frac{15\sqrt{65}+175}{2} x=\frac{175-15\sqrt{65}}{2}
Add \frac{175}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}