Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Share

\left(1700-881.41\right)x^{2}+38\times 881.41=0
Multiply both sides of the equation by 19.
818.59x^{2}+38\times 881.41=0
Subtract 881.41 from 1700 to get 818.59.
818.59x^{2}+33493.58=0
Multiply 38 and 881.41 to get 33493.58.
818.59x^{2}=-33493.58
Subtract 33493.58 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-33493.58}{818.59}
Divide both sides by 818.59.
x^{2}=\frac{-3349358}{81859}
Expand \frac{-33493.58}{818.59} by multiplying both numerator and the denominator by 100.
x^{2}=-\frac{3349358}{81859}
Fraction \frac{-3349358}{81859} can be rewritten as -\frac{3349358}{81859} by extracting the negative sign.
x=\frac{19\sqrt{759487802}i}{81859} x=-\frac{19\sqrt{759487802}i}{81859}
The equation is now solved.
\left(1700-881.41\right)x^{2}+38\times 881.41=0
Multiply both sides of the equation by 19.
818.59x^{2}+38\times 881.41=0
Subtract 881.41 from 1700 to get 818.59.
818.59x^{2}+33493.58=0
Multiply 38 and 881.41 to get 33493.58.
x=\frac{0±\sqrt{0^{2}-4\times 818.59\times 33493.58}}{2\times 818.59}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 818.59 for a, 0 for b, and 33493.58 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 818.59\times 33493.58}}{2\times 818.59}
Square 0.
x=\frac{0±\sqrt{-3274.36\times 33493.58}}{2\times 818.59}
Multiply -4 times 818.59.
x=\frac{0±\sqrt{-109670038.6088}}{2\times 818.59}
Multiply -3274.36 times 33493.58 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{19\sqrt{759487802}i}{50}}{2\times 818.59}
Take the square root of -109670038.6088.
x=\frac{0±\frac{19\sqrt{759487802}i}{50}}{1637.18}
Multiply 2 times 818.59.
x=\frac{19\sqrt{759487802}i}{81859}
Now solve the equation x=\frac{0±\frac{19\sqrt{759487802}i}{50}}{1637.18} when ± is plus.
x=-\frac{19\sqrt{759487802}i}{81859}
Now solve the equation x=\frac{0±\frac{19\sqrt{759487802}i}{50}}{1637.18} when ± is minus.
x=\frac{19\sqrt{759487802}i}{81859} x=-\frac{19\sqrt{759487802}i}{81859}
The equation is now solved.