(16-25x)-(50+ { x }^{ \frac{ 3 }{ 2 } }
Evaluate
-x^{\frac{3}{2}}-25x-34
Differentiate w.r.t. x
-\frac{3\sqrt{x}}{2}-25
Graph
Share
Copied to clipboard
16-25x-50-x^{\frac{3}{2}}
To find the opposite of 50+x^{\frac{3}{2}}, find the opposite of each term.
-34-25x-x^{\frac{3}{2}}
Subtract 50 from 16 to get -34.
\frac{\mathrm{d}}{\mathrm{d}x}(16-25x-50-x^{\frac{3}{2}})
To find the opposite of 50+x^{\frac{3}{2}}, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(-34-25x-x^{\frac{3}{2}})
Subtract 50 from 16 to get -34.
-25x^{1-1}+\frac{3}{2}\left(-1\right)x^{\frac{3}{2}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-25x^{0}+\frac{3}{2}\left(-1\right)x^{\frac{3}{2}-1}
Subtract 1 from 1.
-25x^{0}-\frac{3}{2}x^{\frac{3}{2}-1}
Multiply \frac{3}{2} times -1.
-25x^{0}-\frac{3}{2}\sqrt{x}
Subtract 1 from \frac{3}{2}.
-25-\frac{3}{2}\sqrt{x}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}