Evaluate
\frac{5}{6}\approx 0.833333333
Factor
\frac{5}{2 \cdot 3} = 0.8333333333333334
Share
Copied to clipboard
\frac{\frac{16}{7}\times 5}{6\times \frac{32}{14}}
Divide \frac{\frac{16}{7}}{6} by \frac{\frac{32}{14}}{5} by multiplying \frac{\frac{16}{7}}{6} by the reciprocal of \frac{\frac{32}{14}}{5}.
\frac{\frac{16\times 5}{7}}{6\times \frac{32}{14}}
Express \frac{16}{7}\times 5 as a single fraction.
\frac{\frac{80}{7}}{6\times \frac{32}{14}}
Multiply 16 and 5 to get 80.
\frac{\frac{80}{7}}{6\times \frac{16}{7}}
Reduce the fraction \frac{32}{14} to lowest terms by extracting and canceling out 2.
\frac{\frac{80}{7}}{\frac{6\times 16}{7}}
Express 6\times \frac{16}{7} as a single fraction.
\frac{\frac{80}{7}}{\frac{96}{7}}
Multiply 6 and 16 to get 96.
\frac{80}{7}\times \frac{7}{96}
Divide \frac{80}{7} by \frac{96}{7} by multiplying \frac{80}{7} by the reciprocal of \frac{96}{7}.
\frac{80\times 7}{7\times 96}
Multiply \frac{80}{7} times \frac{7}{96} by multiplying numerator times numerator and denominator times denominator.
\frac{80}{96}
Cancel out 7 in both numerator and denominator.
\frac{5}{6}
Reduce the fraction \frac{80}{96} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}