Solve for x
x=-70
x=5
Graph
Share
Copied to clipboard
6000-325x-5x^{2}=4250
Use the distributive property to multiply 15-x by 400+5x and combine like terms.
6000-325x-5x^{2}-4250=0
Subtract 4250 from both sides.
1750-325x-5x^{2}=0
Subtract 4250 from 6000 to get 1750.
-5x^{2}-325x+1750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-325\right)±\sqrt{\left(-325\right)^{2}-4\left(-5\right)\times 1750}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -325 for b, and 1750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-325\right)±\sqrt{105625-4\left(-5\right)\times 1750}}{2\left(-5\right)}
Square -325.
x=\frac{-\left(-325\right)±\sqrt{105625+20\times 1750}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-325\right)±\sqrt{105625+35000}}{2\left(-5\right)}
Multiply 20 times 1750.
x=\frac{-\left(-325\right)±\sqrt{140625}}{2\left(-5\right)}
Add 105625 to 35000.
x=\frac{-\left(-325\right)±375}{2\left(-5\right)}
Take the square root of 140625.
x=\frac{325±375}{2\left(-5\right)}
The opposite of -325 is 325.
x=\frac{325±375}{-10}
Multiply 2 times -5.
x=\frac{700}{-10}
Now solve the equation x=\frac{325±375}{-10} when ± is plus. Add 325 to 375.
x=-70
Divide 700 by -10.
x=-\frac{50}{-10}
Now solve the equation x=\frac{325±375}{-10} when ± is minus. Subtract 375 from 325.
x=5
Divide -50 by -10.
x=-70 x=5
The equation is now solved.
6000-325x-5x^{2}=4250
Use the distributive property to multiply 15-x by 400+5x and combine like terms.
-325x-5x^{2}=4250-6000
Subtract 6000 from both sides.
-325x-5x^{2}=-1750
Subtract 6000 from 4250 to get -1750.
-5x^{2}-325x=-1750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}-325x}{-5}=-\frac{1750}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{325}{-5}\right)x=-\frac{1750}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+65x=-\frac{1750}{-5}
Divide -325 by -5.
x^{2}+65x=350
Divide -1750 by -5.
x^{2}+65x+\left(\frac{65}{2}\right)^{2}=350+\left(\frac{65}{2}\right)^{2}
Divide 65, the coefficient of the x term, by 2 to get \frac{65}{2}. Then add the square of \frac{65}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+65x+\frac{4225}{4}=350+\frac{4225}{4}
Square \frac{65}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+65x+\frac{4225}{4}=\frac{5625}{4}
Add 350 to \frac{4225}{4}.
\left(x+\frac{65}{2}\right)^{2}=\frac{5625}{4}
Factor x^{2}+65x+\frac{4225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{65}{2}\right)^{2}}=\sqrt{\frac{5625}{4}}
Take the square root of both sides of the equation.
x+\frac{65}{2}=\frac{75}{2} x+\frac{65}{2}=-\frac{75}{2}
Simplify.
x=5 x=-70
Subtract \frac{65}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}