Evaluate
\frac{1200}{19}\approx 63.157894737
Factor
\frac{2 ^ {4} \cdot 3 \cdot 5 ^ {2}}{19} = 63\frac{3}{19} = 63.1578947368421
Share
Copied to clipboard
\left(15-\frac{\frac{1700}{285}\times 15}{20}\right)\times 6
Multiply 20 and 85 to get 1700.
\left(15-\frac{\frac{340}{57}\times 15}{20}\right)\times 6
Reduce the fraction \frac{1700}{285} to lowest terms by extracting and canceling out 5.
\left(15-\frac{\frac{340\times 15}{57}}{20}\right)\times 6
Express \frac{340}{57}\times 15 as a single fraction.
\left(15-\frac{\frac{5100}{57}}{20}\right)\times 6
Multiply 340 and 15 to get 5100.
\left(15-\frac{\frac{1700}{19}}{20}\right)\times 6
Reduce the fraction \frac{5100}{57} to lowest terms by extracting and canceling out 3.
\left(15-\frac{1700}{19\times 20}\right)\times 6
Express \frac{\frac{1700}{19}}{20} as a single fraction.
\left(15-\frac{1700}{380}\right)\times 6
Multiply 19 and 20 to get 380.
\left(15-\frac{85}{19}\right)\times 6
Reduce the fraction \frac{1700}{380} to lowest terms by extracting and canceling out 20.
\left(\frac{285}{19}-\frac{85}{19}\right)\times 6
Convert 15 to fraction \frac{285}{19}.
\frac{285-85}{19}\times 6
Since \frac{285}{19} and \frac{85}{19} have the same denominator, subtract them by subtracting their numerators.
\frac{200}{19}\times 6
Subtract 85 from 285 to get 200.
\frac{200\times 6}{19}
Express \frac{200}{19}\times 6 as a single fraction.
\frac{1200}{19}
Multiply 200 and 6 to get 1200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}