(148+x) \times 5 \% =54.76
Solve for x
x=947.2
Graph
Share
Copied to clipboard
\left(148+x\right)\times \frac{1}{20}=54.76
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
148\times \frac{1}{20}+x\times \frac{1}{20}=54.76
Use the distributive property to multiply 148+x by \frac{1}{20}.
\frac{148}{20}+x\times \frac{1}{20}=54.76
Multiply 148 and \frac{1}{20} to get \frac{148}{20}.
\frac{37}{5}+x\times \frac{1}{20}=54.76
Reduce the fraction \frac{148}{20} to lowest terms by extracting and canceling out 4.
x\times \frac{1}{20}=54.76-\frac{37}{5}
Subtract \frac{37}{5} from both sides.
x\times \frac{1}{20}=\frac{1369}{25}-\frac{37}{5}
Convert decimal number 54.76 to fraction \frac{5476}{100}. Reduce the fraction \frac{5476}{100} to lowest terms by extracting and canceling out 4.
x\times \frac{1}{20}=\frac{1369}{25}-\frac{185}{25}
Least common multiple of 25 and 5 is 25. Convert \frac{1369}{25} and \frac{37}{5} to fractions with denominator 25.
x\times \frac{1}{20}=\frac{1369-185}{25}
Since \frac{1369}{25} and \frac{185}{25} have the same denominator, subtract them by subtracting their numerators.
x\times \frac{1}{20}=\frac{1184}{25}
Subtract 185 from 1369 to get 1184.
x=\frac{1184}{25}\times 20
Multiply both sides by 20, the reciprocal of \frac{1}{20}.
x=\frac{1184\times 20}{25}
Express \frac{1184}{25}\times 20 as a single fraction.
x=\frac{23680}{25}
Multiply 1184 and 20 to get 23680.
x=\frac{4736}{5}
Reduce the fraction \frac{23680}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}