Solve for x
x=60
x = \frac{320}{3} = 106\frac{2}{3} \approx 106.666666667
Graph
Share
Copied to clipboard
125x-\frac{3}{4}xx=4800
Use the distributive property to multiply 125-\frac{3}{4}x by x.
125x-\frac{3}{4}x^{2}=4800
Multiply x and x to get x^{2}.
125x-\frac{3}{4}x^{2}-4800=0
Subtract 4800 from both sides.
-\frac{3}{4}x^{2}+125x-4800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-125±\sqrt{125^{2}-4\left(-\frac{3}{4}\right)\left(-4800\right)}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, 125 for b, and -4800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-125±\sqrt{15625-4\left(-\frac{3}{4}\right)\left(-4800\right)}}{2\left(-\frac{3}{4}\right)}
Square 125.
x=\frac{-125±\sqrt{15625+3\left(-4800\right)}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
x=\frac{-125±\sqrt{15625-14400}}{2\left(-\frac{3}{4}\right)}
Multiply 3 times -4800.
x=\frac{-125±\sqrt{1225}}{2\left(-\frac{3}{4}\right)}
Add 15625 to -14400.
x=\frac{-125±35}{2\left(-\frac{3}{4}\right)}
Take the square root of 1225.
x=\frac{-125±35}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
x=-\frac{90}{-\frac{3}{2}}
Now solve the equation x=\frac{-125±35}{-\frac{3}{2}} when ± is plus. Add -125 to 35.
x=60
Divide -90 by -\frac{3}{2} by multiplying -90 by the reciprocal of -\frac{3}{2}.
x=-\frac{160}{-\frac{3}{2}}
Now solve the equation x=\frac{-125±35}{-\frac{3}{2}} when ± is minus. Subtract 35 from -125.
x=\frac{320}{3}
Divide -160 by -\frac{3}{2} by multiplying -160 by the reciprocal of -\frac{3}{2}.
x=60 x=\frac{320}{3}
The equation is now solved.
125x-\frac{3}{4}xx=4800
Use the distributive property to multiply 125-\frac{3}{4}x by x.
125x-\frac{3}{4}x^{2}=4800
Multiply x and x to get x^{2}.
-\frac{3}{4}x^{2}+125x=4800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{3}{4}x^{2}+125x}{-\frac{3}{4}}=\frac{4800}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{125}{-\frac{3}{4}}x=\frac{4800}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
x^{2}-\frac{500}{3}x=\frac{4800}{-\frac{3}{4}}
Divide 125 by -\frac{3}{4} by multiplying 125 by the reciprocal of -\frac{3}{4}.
x^{2}-\frac{500}{3}x=-6400
Divide 4800 by -\frac{3}{4} by multiplying 4800 by the reciprocal of -\frac{3}{4}.
x^{2}-\frac{500}{3}x+\left(-\frac{250}{3}\right)^{2}=-6400+\left(-\frac{250}{3}\right)^{2}
Divide -\frac{500}{3}, the coefficient of the x term, by 2 to get -\frac{250}{3}. Then add the square of -\frac{250}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{500}{3}x+\frac{62500}{9}=-6400+\frac{62500}{9}
Square -\frac{250}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{500}{3}x+\frac{62500}{9}=\frac{4900}{9}
Add -6400 to \frac{62500}{9}.
\left(x-\frac{250}{3}\right)^{2}=\frac{4900}{9}
Factor x^{2}-\frac{500}{3}x+\frac{62500}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{250}{3}\right)^{2}}=\sqrt{\frac{4900}{9}}
Take the square root of both sides of the equation.
x-\frac{250}{3}=\frac{70}{3} x-\frac{250}{3}=-\frac{70}{3}
Simplify.
x=\frac{320}{3} x=60
Add \frac{250}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}