Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1200+140x-20x^{2}=1400
Use the distributive property to multiply 12-x by 100+20x and combine like terms.
1200+140x-20x^{2}-1400=0
Subtract 1400 from both sides.
-200+140x-20x^{2}=0
Subtract 1400 from 1200 to get -200.
-20x^{2}+140x-200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-140±\sqrt{140^{2}-4\left(-20\right)\left(-200\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 140 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-140±\sqrt{19600-4\left(-20\right)\left(-200\right)}}{2\left(-20\right)}
Square 140.
x=\frac{-140±\sqrt{19600+80\left(-200\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-140±\sqrt{19600-16000}}{2\left(-20\right)}
Multiply 80 times -200.
x=\frac{-140±\sqrt{3600}}{2\left(-20\right)}
Add 19600 to -16000.
x=\frac{-140±60}{2\left(-20\right)}
Take the square root of 3600.
x=\frac{-140±60}{-40}
Multiply 2 times -20.
x=-\frac{80}{-40}
Now solve the equation x=\frac{-140±60}{-40} when ± is plus. Add -140 to 60.
x=2
Divide -80 by -40.
x=-\frac{200}{-40}
Now solve the equation x=\frac{-140±60}{-40} when ± is minus. Subtract 60 from -140.
x=5
Divide -200 by -40.
x=2 x=5
The equation is now solved.
1200+140x-20x^{2}=1400
Use the distributive property to multiply 12-x by 100+20x and combine like terms.
140x-20x^{2}=1400-1200
Subtract 1200 from both sides.
140x-20x^{2}=200
Subtract 1200 from 1400 to get 200.
-20x^{2}+140x=200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+140x}{-20}=\frac{200}{-20}
Divide both sides by -20.
x^{2}+\frac{140}{-20}x=\frac{200}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-7x=\frac{200}{-20}
Divide 140 by -20.
x^{2}-7x=-10
Divide 200 by -20.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
Add -10 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
Simplify.
x=5 x=2
Add \frac{7}{2} to both sides of the equation.