Solve for t
t=\frac{3}{10}=0.3
t=0
Share
Copied to clipboard
\left(4800-2000t\right)\left(1+\frac{4}{3}t\right)+9\left(1+\frac{1}{5}t\right)\times 200=6600\left(1+\frac{3}{5}t\right)
Use the distributive property to multiply 12-5t by 400.
4800+4400t-\frac{8000}{3}t^{2}+9\left(1+\frac{1}{5}t\right)\times 200=6600\left(1+\frac{3}{5}t\right)
Use the distributive property to multiply 4800-2000t by 1+\frac{4}{3}t and combine like terms.
4800+4400t-\frac{8000}{3}t^{2}+1800\left(1+\frac{1}{5}t\right)=6600\left(1+\frac{3}{5}t\right)
Multiply 9 and 200 to get 1800.
4800+4400t-\frac{8000}{3}t^{2}+1800+360t=6600\left(1+\frac{3}{5}t\right)
Use the distributive property to multiply 1800 by 1+\frac{1}{5}t.
6600+4400t-\frac{8000}{3}t^{2}+360t=6600\left(1+\frac{3}{5}t\right)
Add 4800 and 1800 to get 6600.
6600+4760t-\frac{8000}{3}t^{2}=6600\left(1+\frac{3}{5}t\right)
Combine 4400t and 360t to get 4760t.
6600+4760t-\frac{8000}{3}t^{2}=6600+3960t
Use the distributive property to multiply 6600 by 1+\frac{3}{5}t.
6600+4760t-\frac{8000}{3}t^{2}-6600=3960t
Subtract 6600 from both sides.
4760t-\frac{8000}{3}t^{2}=3960t
Subtract 6600 from 6600 to get 0.
4760t-\frac{8000}{3}t^{2}-3960t=0
Subtract 3960t from both sides.
800t-\frac{8000}{3}t^{2}=0
Combine 4760t and -3960t to get 800t.
-\frac{8000}{3}t^{2}+800t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-800±\sqrt{800^{2}}}{2\left(-\frac{8000}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{8000}{3} for a, 800 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-800±800}{2\left(-\frac{8000}{3}\right)}
Take the square root of 800^{2}.
t=\frac{-800±800}{-\frac{16000}{3}}
Multiply 2 times -\frac{8000}{3}.
t=\frac{0}{-\frac{16000}{3}}
Now solve the equation t=\frac{-800±800}{-\frac{16000}{3}} when ± is plus. Add -800 to 800.
t=0
Divide 0 by -\frac{16000}{3} by multiplying 0 by the reciprocal of -\frac{16000}{3}.
t=-\frac{1600}{-\frac{16000}{3}}
Now solve the equation t=\frac{-800±800}{-\frac{16000}{3}} when ± is minus. Subtract 800 from -800.
t=\frac{3}{10}
Divide -1600 by -\frac{16000}{3} by multiplying -1600 by the reciprocal of -\frac{16000}{3}.
t=0 t=\frac{3}{10}
The equation is now solved.
\left(4800-2000t\right)\left(1+\frac{4}{3}t\right)+9\left(1+\frac{1}{5}t\right)\times 200=6600\left(1+\frac{3}{5}t\right)
Use the distributive property to multiply 12-5t by 400.
4800+4400t-\frac{8000}{3}t^{2}+9\left(1+\frac{1}{5}t\right)\times 200=6600\left(1+\frac{3}{5}t\right)
Use the distributive property to multiply 4800-2000t by 1+\frac{4}{3}t and combine like terms.
4800+4400t-\frac{8000}{3}t^{2}+1800\left(1+\frac{1}{5}t\right)=6600\left(1+\frac{3}{5}t\right)
Multiply 9 and 200 to get 1800.
4800+4400t-\frac{8000}{3}t^{2}+1800+360t=6600\left(1+\frac{3}{5}t\right)
Use the distributive property to multiply 1800 by 1+\frac{1}{5}t.
6600+4400t-\frac{8000}{3}t^{2}+360t=6600\left(1+\frac{3}{5}t\right)
Add 4800 and 1800 to get 6600.
6600+4760t-\frac{8000}{3}t^{2}=6600\left(1+\frac{3}{5}t\right)
Combine 4400t and 360t to get 4760t.
6600+4760t-\frac{8000}{3}t^{2}=6600+3960t
Use the distributive property to multiply 6600 by 1+\frac{3}{5}t.
6600+4760t-\frac{8000}{3}t^{2}-3960t=6600
Subtract 3960t from both sides.
6600+800t-\frac{8000}{3}t^{2}=6600
Combine 4760t and -3960t to get 800t.
800t-\frac{8000}{3}t^{2}=6600-6600
Subtract 6600 from both sides.
800t-\frac{8000}{3}t^{2}=0
Subtract 6600 from 6600 to get 0.
-\frac{8000}{3}t^{2}+800t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{8000}{3}t^{2}+800t}{-\frac{8000}{3}}=\frac{0}{-\frac{8000}{3}}
Divide both sides of the equation by -\frac{8000}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{800}{-\frac{8000}{3}}t=\frac{0}{-\frac{8000}{3}}
Dividing by -\frac{8000}{3} undoes the multiplication by -\frac{8000}{3}.
t^{2}-\frac{3}{10}t=\frac{0}{-\frac{8000}{3}}
Divide 800 by -\frac{8000}{3} by multiplying 800 by the reciprocal of -\frac{8000}{3}.
t^{2}-\frac{3}{10}t=0
Divide 0 by -\frac{8000}{3} by multiplying 0 by the reciprocal of -\frac{8000}{3}.
t^{2}-\frac{3}{10}t+\left(-\frac{3}{20}\right)^{2}=\left(-\frac{3}{20}\right)^{2}
Divide -\frac{3}{10}, the coefficient of the x term, by 2 to get -\frac{3}{20}. Then add the square of -\frac{3}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{3}{10}t+\frac{9}{400}=\frac{9}{400}
Square -\frac{3}{20} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{3}{20}\right)^{2}=\frac{9}{400}
Factor t^{2}-\frac{3}{10}t+\frac{9}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{20}\right)^{2}}=\sqrt{\frac{9}{400}}
Take the square root of both sides of the equation.
t-\frac{3}{20}=\frac{3}{20} t-\frac{3}{20}=-\frac{3}{20}
Simplify.
t=\frac{3}{10} t=0
Add \frac{3}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}