Solve for x
x=-2
x=8
Graph
Share
Copied to clipboard
2160+60x-10x^{2}=2000
Use the distributive property to multiply 12+x by 180-10x and combine like terms.
2160+60x-10x^{2}-2000=0
Subtract 2000 from both sides.
160+60x-10x^{2}=0
Subtract 2000 from 2160 to get 160.
-10x^{2}+60x+160=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\left(-10\right)\times 160}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 60 for b, and 160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-10\right)\times 160}}{2\left(-10\right)}
Square 60.
x=\frac{-60±\sqrt{3600+40\times 160}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-60±\sqrt{3600+6400}}{2\left(-10\right)}
Multiply 40 times 160.
x=\frac{-60±\sqrt{10000}}{2\left(-10\right)}
Add 3600 to 6400.
x=\frac{-60±100}{2\left(-10\right)}
Take the square root of 10000.
x=\frac{-60±100}{-20}
Multiply 2 times -10.
x=\frac{40}{-20}
Now solve the equation x=\frac{-60±100}{-20} when ± is plus. Add -60 to 100.
x=-2
Divide 40 by -20.
x=-\frac{160}{-20}
Now solve the equation x=\frac{-60±100}{-20} when ± is minus. Subtract 100 from -60.
x=8
Divide -160 by -20.
x=-2 x=8
The equation is now solved.
2160+60x-10x^{2}=2000
Use the distributive property to multiply 12+x by 180-10x and combine like terms.
60x-10x^{2}=2000-2160
Subtract 2160 from both sides.
60x-10x^{2}=-160
Subtract 2160 from 2000 to get -160.
-10x^{2}+60x=-160
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+60x}{-10}=-\frac{160}{-10}
Divide both sides by -10.
x^{2}+\frac{60}{-10}x=-\frac{160}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-6x=-\frac{160}{-10}
Divide 60 by -10.
x^{2}-6x=16
Divide -160 by -10.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=16+9
Square -3.
x^{2}-6x+9=25
Add 16 to 9.
\left(x-3\right)^{2}=25
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-3=5 x-3=-5
Simplify.
x=8 x=-2
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}