Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{300+13}{25}+\frac{7\times 17+8}{17}\right)\times 2.5+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Multiply 12 and 25 to get 300.
\left(\frac{313}{25}+\frac{7\times 17+8}{17}\right)\times 2.5+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Add 300 and 13 to get 313.
\left(\frac{313}{25}+\frac{119+8}{17}\right)\times 2.5+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Multiply 7 and 17 to get 119.
\left(\frac{313}{25}+\frac{127}{17}\right)\times 2.5+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Add 119 and 8 to get 127.
\left(\frac{5321}{425}+\frac{3175}{425}\right)\times 2.5+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Least common multiple of 25 and 17 is 425. Convert \frac{313}{25} and \frac{127}{17} to fractions with denominator 425.
\frac{5321+3175}{425}\times 2.5+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Since \frac{5321}{425} and \frac{3175}{425} have the same denominator, add them by adding their numerators.
\frac{8496}{425}\times 2.5+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Add 5321 and 3175 to get 8496.
\frac{8496}{425}\times \frac{5}{2}+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
\frac{8496\times 5}{425\times 2}+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Multiply \frac{8496}{425} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{42480}{850}+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Do the multiplications in the fraction \frac{8496\times 5}{425\times 2}.
\frac{4248}{85}+\left(\frac{9\times 17+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Reduce the fraction \frac{42480}{850} to lowest terms by extracting and canceling out 10.
\frac{4248}{85}+\left(\frac{153+9}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Multiply 9 and 17 to get 153.
\frac{4248}{85}+\left(\frac{162}{17}+\frac{10\times 25+12}{25}\right)\times \frac{2\times 2+1}{2}
Add 153 and 9 to get 162.
\frac{4248}{85}+\left(\frac{162}{17}+\frac{250+12}{25}\right)\times \frac{2\times 2+1}{2}
Multiply 10 and 25 to get 250.
\frac{4248}{85}+\left(\frac{162}{17}+\frac{262}{25}\right)\times \frac{2\times 2+1}{2}
Add 250 and 12 to get 262.
\frac{4248}{85}+\left(\frac{4050}{425}+\frac{4454}{425}\right)\times \frac{2\times 2+1}{2}
Least common multiple of 17 and 25 is 425. Convert \frac{162}{17} and \frac{262}{25} to fractions with denominator 425.
\frac{4248}{85}+\frac{4050+4454}{425}\times \frac{2\times 2+1}{2}
Since \frac{4050}{425} and \frac{4454}{425} have the same denominator, add them by adding their numerators.
\frac{4248}{85}+\frac{8504}{425}\times \frac{2\times 2+1}{2}
Add 4050 and 4454 to get 8504.
\frac{4248}{85}+\frac{8504}{425}\times \frac{4+1}{2}
Multiply 2 and 2 to get 4.
\frac{4248}{85}+\frac{8504}{425}\times \frac{5}{2}
Add 4 and 1 to get 5.
\frac{4248}{85}+\frac{8504\times 5}{425\times 2}
Multiply \frac{8504}{425} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{4248}{85}+\frac{42520}{850}
Do the multiplications in the fraction \frac{8504\times 5}{425\times 2}.
\frac{4248}{85}+\frac{4252}{85}
Reduce the fraction \frac{42520}{850} to lowest terms by extracting and canceling out 10.
\frac{4248+4252}{85}
Since \frac{4248}{85} and \frac{4252}{85} have the same denominator, add them by adding their numerators.
\frac{8500}{85}
Add 4248 and 4252 to get 8500.
100
Divide 8500 by 85 to get 100.