Evaluate
\frac{367}{120}\approx 3.058333333
Factor
\frac{367}{3 \cdot 5 \cdot 2 ^ {3}} = 3\frac{7}{120} = 3.058333333333333
Share
Copied to clipboard
\frac{1101}{\frac{998-103}{5}+1}\times 0.5
Add 103 and 998 to get 1101.
\frac{1101}{\frac{895}{5}+1}\times 0.5
Subtract 103 from 998 to get 895.
\frac{1101}{179+1}\times 0.5
Divide 895 by 5 to get 179.
\frac{1101}{180}\times 0.5
Add 179 and 1 to get 180.
\frac{367}{60}\times 0.5
Reduce the fraction \frac{1101}{180} to lowest terms by extracting and canceling out 3.
\frac{367}{60}\times \frac{1}{2}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{367\times 1}{60\times 2}
Multiply \frac{367}{60} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{367}{120}
Do the multiplications in the fraction \frac{367\times 1}{60\times 2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}