Solve for x (complex solution)
x=150+10\sqrt{39}i\approx 150+62.449979984i
x=-10\sqrt{39}i+150\approx 150-62.449979984i
Graph
Share
Copied to clipboard
1500x-100000-5x^{2}=32000
Use the distributive property to multiply 1000-5x by x-100 and combine like terms.
1500x-100000-5x^{2}-32000=0
Subtract 32000 from both sides.
1500x-132000-5x^{2}=0
Subtract 32000 from -100000 to get -132000.
-5x^{2}+1500x-132000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1500±\sqrt{1500^{2}-4\left(-5\right)\left(-132000\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 1500 for b, and -132000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1500±\sqrt{2250000-4\left(-5\right)\left(-132000\right)}}{2\left(-5\right)}
Square 1500.
x=\frac{-1500±\sqrt{2250000+20\left(-132000\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-1500±\sqrt{2250000-2640000}}{2\left(-5\right)}
Multiply 20 times -132000.
x=\frac{-1500±\sqrt{-390000}}{2\left(-5\right)}
Add 2250000 to -2640000.
x=\frac{-1500±100\sqrt{39}i}{2\left(-5\right)}
Take the square root of -390000.
x=\frac{-1500±100\sqrt{39}i}{-10}
Multiply 2 times -5.
x=\frac{-1500+100\sqrt{39}i}{-10}
Now solve the equation x=\frac{-1500±100\sqrt{39}i}{-10} when ± is plus. Add -1500 to 100i\sqrt{39}.
x=-10\sqrt{39}i+150
Divide -1500+100i\sqrt{39} by -10.
x=\frac{-100\sqrt{39}i-1500}{-10}
Now solve the equation x=\frac{-1500±100\sqrt{39}i}{-10} when ± is minus. Subtract 100i\sqrt{39} from -1500.
x=150+10\sqrt{39}i
Divide -1500-100i\sqrt{39} by -10.
x=-10\sqrt{39}i+150 x=150+10\sqrt{39}i
The equation is now solved.
1500x-100000-5x^{2}=32000
Use the distributive property to multiply 1000-5x by x-100 and combine like terms.
1500x-5x^{2}=32000+100000
Add 100000 to both sides.
1500x-5x^{2}=132000
Add 32000 and 100000 to get 132000.
-5x^{2}+1500x=132000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+1500x}{-5}=\frac{132000}{-5}
Divide both sides by -5.
x^{2}+\frac{1500}{-5}x=\frac{132000}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-300x=\frac{132000}{-5}
Divide 1500 by -5.
x^{2}-300x=-26400
Divide 132000 by -5.
x^{2}-300x+\left(-150\right)^{2}=-26400+\left(-150\right)^{2}
Divide -300, the coefficient of the x term, by 2 to get -150. Then add the square of -150 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-300x+22500=-26400+22500
Square -150.
x^{2}-300x+22500=-3900
Add -26400 to 22500.
\left(x-150\right)^{2}=-3900
Factor x^{2}-300x+22500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-150\right)^{2}}=\sqrt{-3900}
Take the square root of both sides of the equation.
x-150=10\sqrt{39}i x-150=-10\sqrt{39}i
Simplify.
x=150+10\sqrt{39}i x=-10\sqrt{39}i+150
Add 150 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}