Solve for x
x=\frac{100y}{y+100}
y\neq -100
Solve for y
y=\frac{100x}{100-x}
x\neq 100
Graph
Share
Copied to clipboard
\left(100-x\right)y\left(1+0\times 2x\right)=100x
Multiply 0 and 0 to get 0.
\left(100-x\right)y\left(1+0x\right)=100x
Multiply 0 and 2 to get 0.
\left(100-x\right)y\left(1+0\right)=100x
Anything times zero gives zero.
\left(100-x\right)y\times 1=100x
Add 1 and 0 to get 1.
\left(100y-xy\right)\times 1=100x
Use the distributive property to multiply 100-x by y.
100y-xy=100x
Use the distributive property to multiply 100y-xy by 1.
100y-xy-100x=0
Subtract 100x from both sides.
-xy-100x=-100y
Subtract 100y from both sides. Anything subtracted from zero gives its negation.
\left(-y-100\right)x=-100y
Combine all terms containing x.
\frac{\left(-y-100\right)x}{-y-100}=-\frac{100y}{-y-100}
Divide both sides by -y-100.
x=-\frac{100y}{-y-100}
Dividing by -y-100 undoes the multiplication by -y-100.
x=\frac{100y}{y+100}
Divide -100y by -y-100.
\left(100-x\right)y\left(1+0\times 2x\right)=100x
Multiply 0 and 0 to get 0.
\left(100-x\right)y\left(1+0x\right)=100x
Multiply 0 and 2 to get 0.
\left(100-x\right)y\left(1+0\right)=100x
Anything times zero gives zero.
\left(100-x\right)y\times 1=100x
Add 1 and 0 to get 1.
\left(100y-xy\right)\times 1=100x
Use the distributive property to multiply 100-x by y.
100y-xy=100x
Use the distributive property to multiply 100y-xy by 1.
\left(100-x\right)y=100x
Combine all terms containing y.
\frac{\left(100-x\right)y}{100-x}=\frac{100x}{100-x}
Divide both sides by 100-x.
y=\frac{100x}{100-x}
Dividing by 100-x undoes the multiplication by 100-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}