Solve for x
x=18
x=24
Graph
Quiz
Quadratic Equation
5 problems similar to:
(100-x) \times (3000+50x)-150 \times (100-x)-50x=306600
Share
Copied to clipboard
300000+2000x-50x^{2}-150\left(100-x\right)-50x=306600
Use the distributive property to multiply 100-x by 3000+50x and combine like terms.
300000+2000x-50x^{2}-15000+150x-50x=306600
Use the distributive property to multiply -150 by 100-x.
285000+2000x-50x^{2}+150x-50x=306600
Subtract 15000 from 300000 to get 285000.
285000+2150x-50x^{2}-50x=306600
Combine 2000x and 150x to get 2150x.
285000+2100x-50x^{2}=306600
Combine 2150x and -50x to get 2100x.
285000+2100x-50x^{2}-306600=0
Subtract 306600 from both sides.
-21600+2100x-50x^{2}=0
Subtract 306600 from 285000 to get -21600.
-50x^{2}+2100x-21600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2100±\sqrt{2100^{2}-4\left(-50\right)\left(-21600\right)}}{2\left(-50\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50 for a, 2100 for b, and -21600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2100±\sqrt{4410000-4\left(-50\right)\left(-21600\right)}}{2\left(-50\right)}
Square 2100.
x=\frac{-2100±\sqrt{4410000+200\left(-21600\right)}}{2\left(-50\right)}
Multiply -4 times -50.
x=\frac{-2100±\sqrt{4410000-4320000}}{2\left(-50\right)}
Multiply 200 times -21600.
x=\frac{-2100±\sqrt{90000}}{2\left(-50\right)}
Add 4410000 to -4320000.
x=\frac{-2100±300}{2\left(-50\right)}
Take the square root of 90000.
x=\frac{-2100±300}{-100}
Multiply 2 times -50.
x=-\frac{1800}{-100}
Now solve the equation x=\frac{-2100±300}{-100} when ± is plus. Add -2100 to 300.
x=18
Divide -1800 by -100.
x=-\frac{2400}{-100}
Now solve the equation x=\frac{-2100±300}{-100} when ± is minus. Subtract 300 from -2100.
x=24
Divide -2400 by -100.
x=18 x=24
The equation is now solved.
300000+2000x-50x^{2}-150\left(100-x\right)-50x=306600
Use the distributive property to multiply 100-x by 3000+50x and combine like terms.
300000+2000x-50x^{2}-15000+150x-50x=306600
Use the distributive property to multiply -150 by 100-x.
285000+2000x-50x^{2}+150x-50x=306600
Subtract 15000 from 300000 to get 285000.
285000+2150x-50x^{2}-50x=306600
Combine 2000x and 150x to get 2150x.
285000+2100x-50x^{2}=306600
Combine 2150x and -50x to get 2100x.
2100x-50x^{2}=306600-285000
Subtract 285000 from both sides.
2100x-50x^{2}=21600
Subtract 285000 from 306600 to get 21600.
-50x^{2}+2100x=21600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-50x^{2}+2100x}{-50}=\frac{21600}{-50}
Divide both sides by -50.
x^{2}+\frac{2100}{-50}x=\frac{21600}{-50}
Dividing by -50 undoes the multiplication by -50.
x^{2}-42x=\frac{21600}{-50}
Divide 2100 by -50.
x^{2}-42x=-432
Divide 21600 by -50.
x^{2}-42x+\left(-21\right)^{2}=-432+\left(-21\right)^{2}
Divide -42, the coefficient of the x term, by 2 to get -21. Then add the square of -21 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-42x+441=-432+441
Square -21.
x^{2}-42x+441=9
Add -432 to 441.
\left(x-21\right)^{2}=9
Factor x^{2}-42x+441. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-21\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-21=3 x-21=-3
Simplify.
x=24 x=18
Add 21 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}