Solve for x
x=40
Graph
Share
Copied to clipboard
160x-3000-2x^{2}=200
Use the distributive property to multiply 100-2x by x-30 and combine like terms.
160x-3000-2x^{2}-200=0
Subtract 200 from both sides.
160x-3200-2x^{2}=0
Subtract 200 from -3000 to get -3200.
-2x^{2}+160x-3200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-160±\sqrt{160^{2}-4\left(-2\right)\left(-3200\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 160 for b, and -3200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-160±\sqrt{25600-4\left(-2\right)\left(-3200\right)}}{2\left(-2\right)}
Square 160.
x=\frac{-160±\sqrt{25600+8\left(-3200\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-160±\sqrt{25600-25600}}{2\left(-2\right)}
Multiply 8 times -3200.
x=\frac{-160±\sqrt{0}}{2\left(-2\right)}
Add 25600 to -25600.
x=-\frac{160}{2\left(-2\right)}
Take the square root of 0.
x=-\frac{160}{-4}
Multiply 2 times -2.
x=40
Divide -160 by -4.
160x-3000-2x^{2}=200
Use the distributive property to multiply 100-2x by x-30 and combine like terms.
160x-2x^{2}=200+3000
Add 3000 to both sides.
160x-2x^{2}=3200
Add 200 and 3000 to get 3200.
-2x^{2}+160x=3200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+160x}{-2}=\frac{3200}{-2}
Divide both sides by -2.
x^{2}+\frac{160}{-2}x=\frac{3200}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-80x=\frac{3200}{-2}
Divide 160 by -2.
x^{2}-80x=-1600
Divide 3200 by -2.
x^{2}-80x+\left(-40\right)^{2}=-1600+\left(-40\right)^{2}
Divide -80, the coefficient of the x term, by 2 to get -40. Then add the square of -40 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-80x+1600=-1600+1600
Square -40.
x^{2}-80x+1600=0
Add -1600 to 1600.
\left(x-40\right)^{2}=0
Factor x^{2}-80x+1600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-40\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-40=0 x-40=0
Simplify.
x=40 x=40
Add 40 to both sides of the equation.
x=40
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}