Solve for x
x = \frac{5 {(\sqrt{3} + 1)}}{2} \approx 6.830127019
Graph
Share
Copied to clipboard
20+10\sqrt{3}-2x-x\sqrt{3}=\sqrt{3}x
Apply the distributive property by multiplying each term of 10-x by each term of 2+\sqrt{3}.
20+10\sqrt{3}-2x-x\sqrt{3}-\sqrt{3}x=0
Subtract \sqrt{3}x from both sides.
20+10\sqrt{3}-2x-2x\sqrt{3}=0
Combine -x\sqrt{3} and -\sqrt{3}x to get -2x\sqrt{3}.
10\sqrt{3}-2x-2x\sqrt{3}=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
-2x-2x\sqrt{3}=-20-10\sqrt{3}
Subtract 10\sqrt{3} from both sides.
\left(-2-2\sqrt{3}\right)x=-20-10\sqrt{3}
Combine all terms containing x.
\left(-2\sqrt{3}-2\right)x=-10\sqrt{3}-20
The equation is in standard form.
\frac{\left(-2\sqrt{3}-2\right)x}{-2\sqrt{3}-2}=\frac{-10\sqrt{3}-20}{-2\sqrt{3}-2}
Divide both sides by -2-2\sqrt{3}.
x=\frac{-10\sqrt{3}-20}{-2\sqrt{3}-2}
Dividing by -2-2\sqrt{3} undoes the multiplication by -2-2\sqrt{3}.
x=\frac{5\sqrt{3}+5}{2}
Divide -20-10\sqrt{3} by -2-2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}