Solve for x (complex solution)
x=\frac{5+\sqrt{3}i}{2}\approx 2.5+0.866025404i
x=\frac{-\sqrt{3}i+5}{2}\approx 2.5-0.866025404i
Graph
Share
Copied to clipboard
10x-2x^{2}=14
Use the distributive property to multiply 10-2x by x.
10x-2x^{2}-14=0
Subtract 14 from both sides.
-2x^{2}+10x-14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-2\right)\left(-14\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 10 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-2\right)\left(-14\right)}}{2\left(-2\right)}
Square 10.
x=\frac{-10±\sqrt{100+8\left(-14\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-10±\sqrt{100-112}}{2\left(-2\right)}
Multiply 8 times -14.
x=\frac{-10±\sqrt{-12}}{2\left(-2\right)}
Add 100 to -112.
x=\frac{-10±2\sqrt{3}i}{2\left(-2\right)}
Take the square root of -12.
x=\frac{-10±2\sqrt{3}i}{-4}
Multiply 2 times -2.
x=\frac{-10+2\sqrt{3}i}{-4}
Now solve the equation x=\frac{-10±2\sqrt{3}i}{-4} when ± is plus. Add -10 to 2i\sqrt{3}.
x=\frac{-\sqrt{3}i+5}{2}
Divide -10+2i\sqrt{3} by -4.
x=\frac{-2\sqrt{3}i-10}{-4}
Now solve the equation x=\frac{-10±2\sqrt{3}i}{-4} when ± is minus. Subtract 2i\sqrt{3} from -10.
x=\frac{5+\sqrt{3}i}{2}
Divide -10-2i\sqrt{3} by -4.
x=\frac{-\sqrt{3}i+5}{2} x=\frac{5+\sqrt{3}i}{2}
The equation is now solved.
10x-2x^{2}=14
Use the distributive property to multiply 10-2x by x.
-2x^{2}+10x=14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+10x}{-2}=\frac{14}{-2}
Divide both sides by -2.
x^{2}+\frac{10}{-2}x=\frac{14}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-5x=\frac{14}{-2}
Divide 10 by -2.
x^{2}-5x=-7
Divide 14 by -2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-7+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-7+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{3}{4}
Add -7 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{3}i}{2} x-\frac{5}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+5}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}