Solve for x
x=10
x=20
Graph
Share
Copied to clipboard
8000+600x-20x^{2}=12000
Use the distributive property to multiply 10+x by 800-20x and combine like terms.
8000+600x-20x^{2}-12000=0
Subtract 12000 from both sides.
-4000+600x-20x^{2}=0
Subtract 12000 from 8000 to get -4000.
-20x^{2}+600x-4000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-600±\sqrt{600^{2}-4\left(-20\right)\left(-4000\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 600 for b, and -4000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-600±\sqrt{360000-4\left(-20\right)\left(-4000\right)}}{2\left(-20\right)}
Square 600.
x=\frac{-600±\sqrt{360000+80\left(-4000\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-600±\sqrt{360000-320000}}{2\left(-20\right)}
Multiply 80 times -4000.
x=\frac{-600±\sqrt{40000}}{2\left(-20\right)}
Add 360000 to -320000.
x=\frac{-600±200}{2\left(-20\right)}
Take the square root of 40000.
x=\frac{-600±200}{-40}
Multiply 2 times -20.
x=-\frac{400}{-40}
Now solve the equation x=\frac{-600±200}{-40} when ± is plus. Add -600 to 200.
x=10
Divide -400 by -40.
x=-\frac{800}{-40}
Now solve the equation x=\frac{-600±200}{-40} when ± is minus. Subtract 200 from -600.
x=20
Divide -800 by -40.
x=10 x=20
The equation is now solved.
8000+600x-20x^{2}=12000
Use the distributive property to multiply 10+x by 800-20x and combine like terms.
600x-20x^{2}=12000-8000
Subtract 8000 from both sides.
600x-20x^{2}=4000
Subtract 8000 from 12000 to get 4000.
-20x^{2}+600x=4000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+600x}{-20}=\frac{4000}{-20}
Divide both sides by -20.
x^{2}+\frac{600}{-20}x=\frac{4000}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-30x=\frac{4000}{-20}
Divide 600 by -20.
x^{2}-30x=-200
Divide 4000 by -20.
x^{2}-30x+\left(-15\right)^{2}=-200+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-200+225
Square -15.
x^{2}-30x+225=25
Add -200 to 225.
\left(x-15\right)^{2}=25
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-15=5 x-15=-5
Simplify.
x=20 x=10
Add 15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}