Solve for x
x=5
x=15
Graph
Share
Copied to clipboard
3000+200x-10x^{2}=3750
Use the distributive property to multiply 10+x by 300-10x and combine like terms.
3000+200x-10x^{2}-3750=0
Subtract 3750 from both sides.
-750+200x-10x^{2}=0
Subtract 3750 from 3000 to get -750.
-10x^{2}+200x-750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-200±\sqrt{200^{2}-4\left(-10\right)\left(-750\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 200 for b, and -750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-10\right)\left(-750\right)}}{2\left(-10\right)}
Square 200.
x=\frac{-200±\sqrt{40000+40\left(-750\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-200±\sqrt{40000-30000}}{2\left(-10\right)}
Multiply 40 times -750.
x=\frac{-200±\sqrt{10000}}{2\left(-10\right)}
Add 40000 to -30000.
x=\frac{-200±100}{2\left(-10\right)}
Take the square root of 10000.
x=\frac{-200±100}{-20}
Multiply 2 times -10.
x=-\frac{100}{-20}
Now solve the equation x=\frac{-200±100}{-20} when ± is plus. Add -200 to 100.
x=5
Divide -100 by -20.
x=-\frac{300}{-20}
Now solve the equation x=\frac{-200±100}{-20} when ± is minus. Subtract 100 from -200.
x=15
Divide -300 by -20.
x=5 x=15
The equation is now solved.
3000+200x-10x^{2}=3750
Use the distributive property to multiply 10+x by 300-10x and combine like terms.
200x-10x^{2}=3750-3000
Subtract 3000 from both sides.
200x-10x^{2}=750
Subtract 3000 from 3750 to get 750.
-10x^{2}+200x=750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+200x}{-10}=\frac{750}{-10}
Divide both sides by -10.
x^{2}+\frac{200}{-10}x=\frac{750}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-20x=\frac{750}{-10}
Divide 200 by -10.
x^{2}-20x=-75
Divide 750 by -10.
x^{2}-20x+\left(-10\right)^{2}=-75+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-75+100
Square -10.
x^{2}-20x+100=25
Add -75 to 100.
\left(x-10\right)^{2}=25
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-10=5 x-10=-5
Simplify.
x=15 x=5
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}