Solve for x
x = \frac{32356042280327499}{14475445308637172} = 2\frac{3405151663053156}{14475445308637172} \approx 2.235236401
Graph
Share
Copied to clipboard
{(1.5 + x)} \cdot 1.0785347426775833 = x \cdot 1.8023070081094419
Evaluate trigonometric functions in the problem
1.61780211401637495+1.0785347426775833x=x\times 1.8023070081094419
Use the distributive property to multiply 1.5+x by 1.0785347426775833.
1.61780211401637495+1.0785347426775833x-x\times 1.8023070081094419=0
Subtract x\times 1.8023070081094419 from both sides.
1.61780211401637495-0.7237722654318586x=0
Combine 1.0785347426775833x and -x\times 1.8023070081094419 to get -0.7237722654318586x.
-0.7237722654318586x=-1.61780211401637495
Subtract 1.61780211401637495 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-1.61780211401637495}{-0.7237722654318586}
Divide both sides by -0.7237722654318586.
x=\frac{-161780211401637495}{-72377226543185860}
Expand \frac{-1.61780211401637495}{-0.7237722654318586} by multiplying both numerator and the denominator by 100000000000000000.
x=\frac{32356042280327499}{14475445308637172}
Reduce the fraction \frac{-161780211401637495}{-72377226543185860} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}