Solve for x
x = \frac{2830400}{31} = 91303\frac{7}{31} \approx 91303.225806452
Graph
Share
Copied to clipboard
899\times 1.2\times 10^{5}\times 200+870\times 0.8\times 10^{5}\times 300=930x\times 500
Multiply both sides of the equation by 269700, the least common multiple of 300,310,290.
1078.8\times 10^{5}\times 200+870\times 0.8\times 10^{5}\times 300=930x\times 500
Multiply 899 and 1.2 to get 1078.8.
1078.8\times 100000\times 200+870\times 0.8\times 10^{5}\times 300=930x\times 500
Calculate 10 to the power of 5 and get 100000.
107880000\times 200+870\times 0.8\times 10^{5}\times 300=930x\times 500
Multiply 1078.8 and 100000 to get 107880000.
21576000000+870\times 0.8\times 10^{5}\times 300=930x\times 500
Multiply 107880000 and 200 to get 21576000000.
21576000000+696\times 10^{5}\times 300=930x\times 500
Multiply 870 and 0.8 to get 696.
21576000000+696\times 100000\times 300=930x\times 500
Calculate 10 to the power of 5 and get 100000.
21576000000+69600000\times 300=930x\times 500
Multiply 696 and 100000 to get 69600000.
21576000000+20880000000=930x\times 500
Multiply 69600000 and 300 to get 20880000000.
42456000000=930x\times 500
Add 21576000000 and 20880000000 to get 42456000000.
42456000000=465000x
Multiply 930 and 500 to get 465000.
465000x=42456000000
Swap sides so that all variable terms are on the left hand side.
x=\frac{42456000000}{465000}
Divide both sides by 465000.
x=\frac{2830400}{31}
Reduce the fraction \frac{42456000000}{465000} to lowest terms by extracting and canceling out 15000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}