(1-y \% )(1+x \% )
Evaluate
\frac{\left(100-y\right)\left(x+100\right)}{10000}
Expand
-\frac{xy}{10000}+\frac{x}{100}-\frac{y}{100}+1
Share
Copied to clipboard
\left(\frac{100}{100}-\frac{y}{100}\right)\left(1+\frac{x}{100}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{100}{100}.
\frac{100-y}{100}\left(1+\frac{x}{100}\right)
Since \frac{100}{100} and \frac{y}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{100-y}{100}\left(\frac{100}{100}+\frac{x}{100}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{100}{100}.
\frac{100-y}{100}\times \frac{100+x}{100}
Since \frac{100}{100} and \frac{x}{100} have the same denominator, add them by adding their numerators.
\frac{\left(100-y\right)\left(100+x\right)}{100\times 100}
Multiply \frac{100-y}{100} times \frac{100+x}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(100-y\right)\left(100+x\right)}{10000}
Multiply 100 and 100 to get 10000.
\frac{10000+100x-100y-yx}{10000}
Apply the distributive property by multiplying each term of 100-y by each term of 100+x.
\left(\frac{100}{100}-\frac{y}{100}\right)\left(1+\frac{x}{100}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{100}{100}.
\frac{100-y}{100}\left(1+\frac{x}{100}\right)
Since \frac{100}{100} and \frac{y}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{100-y}{100}\left(\frac{100}{100}+\frac{x}{100}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{100}{100}.
\frac{100-y}{100}\times \frac{100+x}{100}
Since \frac{100}{100} and \frac{x}{100} have the same denominator, add them by adding their numerators.
\frac{\left(100-y\right)\left(100+x\right)}{100\times 100}
Multiply \frac{100-y}{100} times \frac{100+x}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(100-y\right)\left(100+x\right)}{10000}
Multiply 100 and 100 to get 10000.
\frac{10000+100x-100y-yx}{10000}
Apply the distributive property by multiplying each term of 100-y by each term of 100+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}