Solve for x (complex solution)
x=\frac{3+\sqrt{11}i}{2}\approx 1.5+1.658312395i
x=\frac{-\sqrt{11}i+3}{2}\approx 1.5-1.658312395i
Graph
Share
Copied to clipboard
2-6x+4x^{2}-\left(-x-2\right)\left(4-2x\right)=0
Use the distributive property to multiply 1-2x by 2-2x and combine like terms.
2-6x+4x^{2}-\left(4\left(-x\right)-2\left(-x\right)x-8+4x\right)=0
Use the distributive property to multiply -x-2 by 4-2x.
2-6x+4x^{2}-\left(4\left(-x\right)+2xx-8+4x\right)=0
Multiply -2 and -1 to get 2.
2-6x+4x^{2}-\left(4\left(-x\right)+2x^{2}-8+4x\right)=0
Multiply x and x to get x^{2}.
2-6x+4x^{2}-4\left(-x\right)-2x^{2}+8-4x=0
To find the opposite of 4\left(-x\right)+2x^{2}-8+4x, find the opposite of each term.
2-6x+4x^{2}+4x-2x^{2}+8-4x=0
Multiply -4 and -1 to get 4.
2-2x+4x^{2}-2x^{2}+8-4x=0
Combine -6x and 4x to get -2x.
2-2x+2x^{2}+8-4x=0
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
10-2x+2x^{2}-4x=0
Add 2 and 8 to get 10.
10-6x+2x^{2}=0
Combine -2x and -4x to get -6x.
2x^{2}-6x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\times 10}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\times 10}}{2\times 2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-8\times 10}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-6\right)±\sqrt{36-80}}{2\times 2}
Multiply -8 times 10.
x=\frac{-\left(-6\right)±\sqrt{-44}}{2\times 2}
Add 36 to -80.
x=\frac{-\left(-6\right)±2\sqrt{11}i}{2\times 2}
Take the square root of -44.
x=\frac{6±2\sqrt{11}i}{2\times 2}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{11}i}{4}
Multiply 2 times 2.
x=\frac{6+2\sqrt{11}i}{4}
Now solve the equation x=\frac{6±2\sqrt{11}i}{4} when ± is plus. Add 6 to 2i\sqrt{11}.
x=\frac{3+\sqrt{11}i}{2}
Divide 6+2i\sqrt{11} by 4.
x=\frac{-2\sqrt{11}i+6}{4}
Now solve the equation x=\frac{6±2\sqrt{11}i}{4} when ± is minus. Subtract 2i\sqrt{11} from 6.
x=\frac{-\sqrt{11}i+3}{2}
Divide 6-2i\sqrt{11} by 4.
x=\frac{3+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i+3}{2}
The equation is now solved.
2-6x+4x^{2}-\left(-x-2\right)\left(4-2x\right)=0
Use the distributive property to multiply 1-2x by 2-2x and combine like terms.
2-6x+4x^{2}-\left(4\left(-x\right)-2\left(-x\right)x-8+4x\right)=0
Use the distributive property to multiply -x-2 by 4-2x.
2-6x+4x^{2}-\left(4\left(-x\right)+2xx-8+4x\right)=0
Multiply -2 and -1 to get 2.
2-6x+4x^{2}-\left(4\left(-x\right)+2x^{2}-8+4x\right)=0
Multiply x and x to get x^{2}.
2-6x+4x^{2}-4\left(-x\right)-2x^{2}+8-4x=0
To find the opposite of 4\left(-x\right)+2x^{2}-8+4x, find the opposite of each term.
2-6x+4x^{2}+4x-2x^{2}+8-4x=0
Multiply -4 and -1 to get 4.
2-2x+4x^{2}-2x^{2}+8-4x=0
Combine -6x and 4x to get -2x.
2-2x+2x^{2}+8-4x=0
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
10-2x+2x^{2}-4x=0
Add 2 and 8 to get 10.
10-6x+2x^{2}=0
Combine -2x and -4x to get -6x.
-6x+2x^{2}=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
2x^{2}-6x=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-6x}{2}=-\frac{10}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{6}{2}\right)x=-\frac{10}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-3x=-\frac{10}{2}
Divide -6 by 2.
x^{2}-3x=-5
Divide -10 by 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-5+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-5+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{11}{4}
Add -5 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{11}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{11}i}{2} x-\frac{3}{2}=-\frac{\sqrt{11}i}{2}
Simplify.
x=\frac{3+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i+3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}