Solve for x
x = \frac{100 \sqrt{2} {(\sqrt{2} + 1)}}{1 - \sqrt{3} - \sqrt{6}} \approx 107.313218497
Graph
Share
Copied to clipboard
\left(1-\sqrt{2}\right)\left(\left(-\sqrt{2}-1\right)\sqrt{3}x+x\right)=100\sqrt{2}
To find the opposite of \sqrt{2}+1, find the opposite of each term.
\left(1-\sqrt{2}\right)\left(\left(-\sqrt{2}\sqrt{3}-\sqrt{3}\right)x+x\right)=100\sqrt{2}
Use the distributive property to multiply -\sqrt{2}-1 by \sqrt{3}.
\left(1-\sqrt{2}\right)\left(\left(-\sqrt{6}-\sqrt{3}\right)x+x\right)=100\sqrt{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(1-\sqrt{2}\right)\left(-\sqrt{6}x-\sqrt{3}x+x\right)=100\sqrt{2}
Use the distributive property to multiply -\sqrt{6}-\sqrt{3} by x.
-\sqrt{6}x-\sqrt{3}x+x+x\sqrt{2}\sqrt{6}+\sqrt{3}x\sqrt{2}-\sqrt{2}x=100\sqrt{2}
Apply the distributive property by multiplying each term of 1-\sqrt{2} by each term of -\sqrt{6}x-\sqrt{3}x+x.
-\sqrt{6}x-\sqrt{3}x+x+x\sqrt{2}\sqrt{2}\sqrt{3}+\sqrt{3}x\sqrt{2}-\sqrt{2}x=100\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-\sqrt{6}x-\sqrt{3}x+x+x\times 2\sqrt{3}+\sqrt{3}x\sqrt{2}-\sqrt{2}x=100\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-\sqrt{6}x+\sqrt{3}x+x+\sqrt{3}x\sqrt{2}-\sqrt{2}x=100\sqrt{2}
Combine -\sqrt{3}x and x\times 2\sqrt{3} to get \sqrt{3}x.
-\sqrt{6}x+\sqrt{3}x+x+\sqrt{6}x-\sqrt{2}x=100\sqrt{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{3}x+x-\sqrt{2}x=100\sqrt{2}
Combine -\sqrt{6}x and \sqrt{6}x to get 0.
\left(\sqrt{3}+1-\sqrt{2}\right)x=100\sqrt{2}
Combine all terms containing x.
\frac{\left(\sqrt{3}+1-\sqrt{2}\right)x}{\sqrt{3}+1-\sqrt{2}}=\frac{100\sqrt{2}}{\sqrt{3}+1-\sqrt{2}}
Divide both sides by \sqrt{3}+1-\sqrt{2}.
x=\frac{100\sqrt{2}}{\sqrt{3}+1-\sqrt{2}}
Dividing by \sqrt{3}+1-\sqrt{2} undoes the multiplication by \sqrt{3}+1-\sqrt{2}.
x=50\sqrt{2}+50\sqrt{3}-50
Divide 100\sqrt{2} by \sqrt{3}+1-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}