Evaluate
\frac{2-3x-3x^{2}}{\left(x\left(x-1\right)\right)^{2}}
Expand
\frac{2-3x-3x^{2}}{\left(x\left(x-1\right)\right)^{2}}
Graph
Share
Copied to clipboard
\frac{\frac{x-1}{x-1}-\frac{1}{x-1}}{x^{2}}-\frac{4}{x^{2}-2x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-1}{x-1}.
\frac{\frac{x-1-1}{x-1}}{x^{2}}-\frac{4}{x^{2}-2x+1}
Since \frac{x-1}{x-1} and \frac{1}{x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2}{x-1}}{x^{2}}-\frac{4}{x^{2}-2x+1}
Combine like terms in x-1-1.
\frac{x-2}{\left(x-1\right)x^{2}}-\frac{4}{x^{2}-2x+1}
Express \frac{\frac{x-2}{x-1}}{x^{2}} as a single fraction.
\frac{x-2}{\left(x-1\right)x^{2}}-\frac{4}{\left(x-1\right)^{2}}
Factor x^{2}-2x+1.
\frac{\left(x-2\right)\left(x-1\right)}{x^{2}\left(x-1\right)^{2}}-\frac{4x^{2}}{x^{2}\left(x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)x^{2} and \left(x-1\right)^{2} is x^{2}\left(x-1\right)^{2}. Multiply \frac{x-2}{\left(x-1\right)x^{2}} times \frac{x-1}{x-1}. Multiply \frac{4}{\left(x-1\right)^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\left(x-2\right)\left(x-1\right)-4x^{2}}{x^{2}\left(x-1\right)^{2}}
Since \frac{\left(x-2\right)\left(x-1\right)}{x^{2}\left(x-1\right)^{2}} and \frac{4x^{2}}{x^{2}\left(x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x-2x+2-4x^{2}}{x^{2}\left(x-1\right)^{2}}
Do the multiplications in \left(x-2\right)\left(x-1\right)-4x^{2}.
\frac{-3x^{2}-3x+2}{x^{2}\left(x-1\right)^{2}}
Combine like terms in x^{2}-x-2x+2-4x^{2}.
\frac{-3x^{2}-3x+2}{x^{4}-2x^{3}+x^{2}}
Expand x^{2}\left(x-1\right)^{2}.
\frac{\frac{x-1}{x-1}-\frac{1}{x-1}}{x^{2}}-\frac{4}{x^{2}-2x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-1}{x-1}.
\frac{\frac{x-1-1}{x-1}}{x^{2}}-\frac{4}{x^{2}-2x+1}
Since \frac{x-1}{x-1} and \frac{1}{x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2}{x-1}}{x^{2}}-\frac{4}{x^{2}-2x+1}
Combine like terms in x-1-1.
\frac{x-2}{\left(x-1\right)x^{2}}-\frac{4}{x^{2}-2x+1}
Express \frac{\frac{x-2}{x-1}}{x^{2}} as a single fraction.
\frac{x-2}{\left(x-1\right)x^{2}}-\frac{4}{\left(x-1\right)^{2}}
Factor x^{2}-2x+1.
\frac{\left(x-2\right)\left(x-1\right)}{x^{2}\left(x-1\right)^{2}}-\frac{4x^{2}}{x^{2}\left(x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)x^{2} and \left(x-1\right)^{2} is x^{2}\left(x-1\right)^{2}. Multiply \frac{x-2}{\left(x-1\right)x^{2}} times \frac{x-1}{x-1}. Multiply \frac{4}{\left(x-1\right)^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\left(x-2\right)\left(x-1\right)-4x^{2}}{x^{2}\left(x-1\right)^{2}}
Since \frac{\left(x-2\right)\left(x-1\right)}{x^{2}\left(x-1\right)^{2}} and \frac{4x^{2}}{x^{2}\left(x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x-2x+2-4x^{2}}{x^{2}\left(x-1\right)^{2}}
Do the multiplications in \left(x-2\right)\left(x-1\right)-4x^{2}.
\frac{-3x^{2}-3x+2}{x^{2}\left(x-1\right)^{2}}
Combine like terms in x^{2}-x-2x+2-4x^{2}.
\frac{-3x^{2}-3x+2}{x^{4}-2x^{3}+x^{2}}
Expand x^{2}\left(x-1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}