Evaluate
-1-\frac{1}{x}
Expand
-1-\frac{1}{x}
Graph
Share
Copied to clipboard
\left(\frac{1-x}{1-x}-\frac{1}{1-x}\right)\left(\frac{1}{x^{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-x}{1-x}.
\frac{1-x-1}{1-x}\left(\frac{1}{x^{2}}-1\right)
Since \frac{1-x}{1-x} and \frac{1}{1-x} have the same denominator, subtract them by subtracting their numerators.
\frac{-x}{1-x}\left(\frac{1}{x^{2}}-1\right)
Combine like terms in 1-x-1.
\frac{-x}{1-x}\left(\frac{1}{x^{2}}-\frac{x^{2}}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}}{x^{2}}.
\frac{-x}{1-x}\times \frac{1-x^{2}}{x^{2}}
Since \frac{1}{x^{2}} and \frac{x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x\left(1-x^{2}\right)}{\left(1-x\right)x^{2}}
Multiply \frac{-x}{1-x} times \frac{1-x^{2}}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-x^{2}+1\right)}{x\left(-x+1\right)}
Cancel out x in both numerator and denominator.
\frac{-\left(x-1\right)\left(-x-1\right)}{x\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(-x-1\right)\left(-x+1\right)}{x\left(-x+1\right)}
Extract the negative sign in -1+x.
\frac{-\left(-1\right)\left(-x-1\right)}{x}
Cancel out -x+1 in both numerator and denominator.
\frac{-x-1}{x}
Expand the expression.
\left(\frac{1-x}{1-x}-\frac{1}{1-x}\right)\left(\frac{1}{x^{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-x}{1-x}.
\frac{1-x-1}{1-x}\left(\frac{1}{x^{2}}-1\right)
Since \frac{1-x}{1-x} and \frac{1}{1-x} have the same denominator, subtract them by subtracting their numerators.
\frac{-x}{1-x}\left(\frac{1}{x^{2}}-1\right)
Combine like terms in 1-x-1.
\frac{-x}{1-x}\left(\frac{1}{x^{2}}-\frac{x^{2}}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}}{x^{2}}.
\frac{-x}{1-x}\times \frac{1-x^{2}}{x^{2}}
Since \frac{1}{x^{2}} and \frac{x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x\left(1-x^{2}\right)}{\left(1-x\right)x^{2}}
Multiply \frac{-x}{1-x} times \frac{1-x^{2}}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-x^{2}+1\right)}{x\left(-x+1\right)}
Cancel out x in both numerator and denominator.
\frac{-\left(x-1\right)\left(-x-1\right)}{x\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(-x-1\right)\left(-x+1\right)}{x\left(-x+1\right)}
Extract the negative sign in -1+x.
\frac{-\left(-1\right)\left(-x-1\right)}{x}
Cancel out -x+1 in both numerator and denominator.
\frac{-x-1}{x}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}