(1)=60(x+3)(x-2
Solve for x
x=\frac{\sqrt{1410}}{15}-\frac{1}{2}\approx 2.003331114
x=-\frac{\sqrt{1410}}{15}-\frac{1}{2}\approx -3.003331114
Graph
Share
Copied to clipboard
1=\left(60x+180\right)\left(x-2\right)
Use the distributive property to multiply 60 by x+3.
1=60x^{2}+60x-360
Use the distributive property to multiply 60x+180 by x-2 and combine like terms.
60x^{2}+60x-360=1
Swap sides so that all variable terms are on the left hand side.
60x^{2}+60x-360-1=0
Subtract 1 from both sides.
60x^{2}+60x-361=0
Subtract 1 from -360 to get -361.
x=\frac{-60±\sqrt{60^{2}-4\times 60\left(-361\right)}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, 60 for b, and -361 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 60\left(-361\right)}}{2\times 60}
Square 60.
x=\frac{-60±\sqrt{3600-240\left(-361\right)}}{2\times 60}
Multiply -4 times 60.
x=\frac{-60±\sqrt{3600+86640}}{2\times 60}
Multiply -240 times -361.
x=\frac{-60±\sqrt{90240}}{2\times 60}
Add 3600 to 86640.
x=\frac{-60±8\sqrt{1410}}{2\times 60}
Take the square root of 90240.
x=\frac{-60±8\sqrt{1410}}{120}
Multiply 2 times 60.
x=\frac{8\sqrt{1410}-60}{120}
Now solve the equation x=\frac{-60±8\sqrt{1410}}{120} when ± is plus. Add -60 to 8\sqrt{1410}.
x=\frac{\sqrt{1410}}{15}-\frac{1}{2}
Divide -60+8\sqrt{1410} by 120.
x=\frac{-8\sqrt{1410}-60}{120}
Now solve the equation x=\frac{-60±8\sqrt{1410}}{120} when ± is minus. Subtract 8\sqrt{1410} from -60.
x=-\frac{\sqrt{1410}}{15}-\frac{1}{2}
Divide -60-8\sqrt{1410} by 120.
x=\frac{\sqrt{1410}}{15}-\frac{1}{2} x=-\frac{\sqrt{1410}}{15}-\frac{1}{2}
The equation is now solved.
1=\left(60x+180\right)\left(x-2\right)
Use the distributive property to multiply 60 by x+3.
1=60x^{2}+60x-360
Use the distributive property to multiply 60x+180 by x-2 and combine like terms.
60x^{2}+60x-360=1
Swap sides so that all variable terms are on the left hand side.
60x^{2}+60x=1+360
Add 360 to both sides.
60x^{2}+60x=361
Add 1 and 360 to get 361.
\frac{60x^{2}+60x}{60}=\frac{361}{60}
Divide both sides by 60.
x^{2}+\frac{60}{60}x=\frac{361}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}+x=\frac{361}{60}
Divide 60 by 60.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{361}{60}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{361}{60}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{94}{15}
Add \frac{361}{60} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{94}{15}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{94}{15}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{1410}}{15} x+\frac{1}{2}=-\frac{\sqrt{1410}}{15}
Simplify.
x=\frac{\sqrt{1410}}{15}-\frac{1}{2} x=-\frac{\sqrt{1410}}{15}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}