(1+40 \% )x \times 80 \% =x+15
Solve for x
x=125
Graph
Share
Copied to clipboard
\left(1+\frac{2}{5}\right)x\times \frac{80}{100}=x+15
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\left(\frac{5}{5}+\frac{2}{5}\right)x\times \frac{80}{100}=x+15
Convert 1 to fraction \frac{5}{5}.
\frac{5+2}{5}x\times \frac{80}{100}=x+15
Since \frac{5}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{7}{5}x\times \frac{80}{100}=x+15
Add 5 and 2 to get 7.
\frac{7}{5}x\times \frac{4}{5}=x+15
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{7\times 4}{5\times 5}x=x+15
Multiply \frac{7}{5} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{25}x=x+15
Do the multiplications in the fraction \frac{7\times 4}{5\times 5}.
\frac{28}{25}x-x=15
Subtract x from both sides.
\frac{3}{25}x=15
Combine \frac{28}{25}x and -x to get \frac{3}{25}x.
x=15\times \frac{25}{3}
Multiply both sides by \frac{25}{3}, the reciprocal of \frac{3}{25}.
x=\frac{15\times 25}{3}
Express 15\times \frac{25}{3} as a single fraction.
x=\frac{375}{3}
Multiply 15 and 25 to get 375.
x=125
Divide 375 by 3 to get 125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}