Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(1+i\right)\left(1+\frac{i}{1i^{2}}\right)
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
\left(1+i\right)\left(1+\frac{i}{-1}\right)
By definition, i^{2} is -1. Calculate the denominator.
\left(1+i\right)\left(1-i\right)
Divide i by -1 to get -i.
1\times 1+1\left(-i\right)+i-i^{2}
Multiply complex numbers 1+i and 1-i like you multiply binomials.
1\times 1+1\left(-i\right)+i-\left(-1\right)
By definition, i^{2} is -1.
1-i+i+1
Do the multiplications.
1+1+\left(-1+1\right)i
Combine the real and imaginary parts.
2
Do the additions.
Re(\left(1+i\right)\left(1+\frac{i}{1i^{2}}\right))
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
Re(\left(1+i\right)\left(1+\frac{i}{-1}\right))
By definition, i^{2} is -1. Calculate the denominator.
Re(\left(1+i\right)\left(1-i\right))
Divide i by -1 to get -i.
Re(1\times 1+1\left(-i\right)+i-i^{2})
Multiply complex numbers 1+i and 1-i like you multiply binomials.
Re(1\times 1+1\left(-i\right)+i-\left(-1\right))
By definition, i^{2} is -1.
Re(1-i+i+1)
Do the multiplications in 1\times 1+1\left(-i\right)+i-\left(-1\right).
Re(1+1+\left(-1+1\right)i)
Combine the real and imaginary parts in 1-i+i+1.
Re(2)
Do the additions in 1+1+\left(-1+1\right)i.
2
The real part of 2 is 2.